

Escenarios climáticos y caracterización de la OFERTA HÍDRICA PRESENTE Y FUTURA EN LAS CUENCA DE LOS RÍOS OCOÑA Y CAMANA MAJES – DE LA REGIÓN AREQUIPA

VOLUMEN I

CONVENIO SENAMHI - LIBELULA

Lima - Perú Octubre - 2017

PERSONAL DIRECTIVO

Ing. Amelia Díaz Pabló Presidenta Ejecutiva del SENAMHI

Ing. Oscar G. Felipe Obando Director de Hidrología del SENAMHI

Ing. Gabriela Rosas Benancio Directora de Meteorología y Evaluación Ambiental de la Atmósfera del SENAMHI

COORDINADORES DEL ESTUDIO

Ing. Delia Acuña Azarte Ing. Oscar Felipe Obando

PERSONAL DE APOYO

Flavio Azursa Sayuri Ramirez Luis Roca Maribel Sánchez Ever Menacho

Lima - Perú Octubre - 2017

INDICE

1.	INTR	ODUCCION	2
	1.1	Objetivo	2
	1.1.1	Objetivo General	
	1.1.2	Objetivos específicos	3
	1.2	ALCANCE	3
	1.2.1	Alcance Temporal	3
	1.2.2	Alcance espacial	3
2.	ASPE	CTOS GENERALES DE LAS CUENCAS EN ESTUDIO	5
		REGION AREQUIPA	
	2.1.1	Demografia	
	2.1.2	Indicadores sociales	
	2.1.3 2.1.4	Produccion agricola	
	2.1.4	Zonas de vida	
		LA CUENCA DEL RÍO OCOÑA	
	2.2.1	Ubicación geográfica	
	2.2.1	Accesibilidad y vías de comunicación	
	2.2.3	Produccion agricola	
	2.2.3	Zonas de vida	
	2.2.4	Hidrografía del río Ocoña	
		LA CUENCA DEL RÍO CAMANÁ-MAJES	
	2.3.1	Ubicación geográfica	
	2.3.2	Accesibilidad y vías de comunicación	
	2.3.3	Producción agricola	
	2.3.1	Zonas de vida	
	2.3.2	Hidrografía del río Camana	
	2.3.3	Infraestructura Hidráulica	
3.		OS Y MÉTODOS	
э.			
		Datos	
	3.1.1		
	3.1.2	Información cartográfica	
	3.2	MÉTODOS	
	3.2.1	Fase de Campo	
	3.2.2	Fase de Gabinete	
	3.2.2.		
	3.2.2.		
	3.2.2.		
	3.2.2.	,	
	3.2.2.	5 Etapa 5. Escenarios de cambio climatico	28
4.	DETE	RMINACIÓN DE PARÁMETROS MORFOMÉTRICOS	32
	4.1	DELIMITACIÓN HIDROGRÁFICA DE LA CUENCA DEL RÍO OCOÑA	32
		DELIMITACIÓN HIDROGRÁFICA DE LA CUENCA DEL RÍO CAMANA	
		CONCLUSIONES	
5.	CVDV	CTERIZACIÓN CLIMÁTICA	AE
٠.			

	5.1	CLIMATOLOGIA DE LA PRECIPITACION EN LA CUENCA DEL RIO OCONA	45
	5.2	CLIMATOLOGÍA DE LA PRECIPITACIÓN EN LA CUENCA DEL RÍO CAMANÁ MAJES	48
	5.3	CLIMATOLOGÍA DE LA TEMPERATURA DEL AIRE	52
	5.3.1	La climatología de la temperatura del aire en la cuenca del río Ocoña	52
	5.3.2	Climatología de la Temperatura del aire en la cuenca del río Camaná Majes	57
	5.3.3	Gradiente de la temperatura del aire regional	62
	5.4	CLIMATOLOGÍA DE LA EVAPOTRANSPIRACIÓN DE REFERENCIA	63
	5.4.1	La Climatología de la Evapotranspiración Potencial en la cuenca del río Ocoña	63
	5.4.2	Climatología de la evapotranspiración de referencia en la cuenca del río Camana Majes	
	5.5	CONCLUSIONES	68
	5.5.1	Respecto a la caracterización de la precipitación actual	68
	5.5.2	Respecto a la caracterización de la Temperatura del aire	68
	5.5.3	Respecto a la caracterización de la evapotranspiración de referencia	69
6.	TENC	PENCIAS DEL CLIMA MEDIO	71
	6.1	TENDENCIAS CLIMÁTICAS DE PRECIPITACIÓN	71
	6.1.1	Tendencia climática de la precipitación en la región Arequipa	71
	6.1.2	Tendencia climática de la precipitación en cuenca del rio Ocoña	71
	6.1.3	Tendencia climática de la precipitación en la cuenca del rio Camana	72
	6.2	TENDENCIAS CLIMÁTICAS DE LA TEMPERATURA MÍNIMA	79
	6.2.1	Tendencia climática de la temperatura máxima en la región Arequipa	79
	6.2.2	Tendencia climática de la temperatura máxima en la cuenca del rio Ocoña	
	6.2.3	Tendencia climática de la temperatura máxima en la Cuenca del rio Camana	
	6.3	TENDENCIAS CLIMÁTICAS DE LA TEMPERATURA MÁXIMA	86
	6.3.1	Tendencias climáticas de la temperatura mínima en la región Arequipa	86
	6.3.2	Tendencias climáticas de la temperatura mínima en la cuenca del rio Ocoña	
	6.3.3	Tendencias climáticas de la temperatura mínima en la cuenca Camana	86
	6.4	Indicadores de extremos climáticos	93
	6.4.1	Indicadores de extremos climáticos en precipitación	93
	6.4.2	Indicadores de extremos climáticos de temperatura máxima	100
	6.4.3	Indicadores de extremos climáticos de temperatura mínima	103
	6.5	CONCLUSIONES	107
	6.5.1	Tendencias del clima medio de precipitación y temperatura	107
	6.5.2	Tendencias de indicadores de extremos climáticos de precipitación y temperatura	107
7.	MOD	ELAMIENTO PARA LA GENERACIÓN DE LA OFERTA DE AGUA	115
	7.1	EL MODELAMIENTO HIDROLÓGICO CON SWAT	115
	7.1.1	El modelo SWAT	115
	7.1.2	Etapas de implementación de un modelo hidrológico SWAT	117
	7.2	EL MARCO METODOLÓGICO ADOPTADO PARA LA MODELIZACIÓN HIDROLÓGICA CON SWAT	117
	7.3	RECOPILACIÓN DE INFORMACIÓN	118
	7.4	CONSTRUCCIÓN DEL MODELO SWAT	123
	7.4.1	Consideraciones para la delimitación de las subcuencas y HRU	123
	7.4.2	Calibración del modelo SWAT	129
	7.5	RESULTADOS DEL MODELAMIENTO EN LA CUENCA DEL RIO OCOÑA	130
	7.5.1	Simulacion inicial del modelo SWAT	130
	7.5.2	Calibración manual del modelo SWAT	131
	7.5.3	Análisis de sensibilidad de los principales parámetros del modelo SWAT	131
	7.5.4	Calibración semiautomática mediante el algoritmo Sequential Uncertainty Fitting (SUFI2)	132
	7.5.5	Simulación a paso de tiempo diario	133

	7.5.6	Simulacion a paso de tiempo mensual	134
	7.5.7	Balance hídrico de la cuenca del río Ocoña	134
	7.5.8	Balance hídrico de la cuenca del río Ocoña	135
7.	6 RE	SULTADOS DEL MODELAMIENTO EN LA CUENCA DEL RIO CAMANA MAJES	141
	7.6.1	Simulación inicial del modelo	141
	7.6.2	Calibración manual del modelo SWAT	142
	7.6.3	Análisis de sensibilidad de los principales parámetros del modelo SWAT	142
	7.6.4	Calibración semiautomática mediante el algoritmo Sequential Uncertainty Fitting (SUFI2)	145
	7.6.5	Simulación a paso de tiempo diario	145
	7.6.6	Simulación a paso de tiempo mensual	146
	7.6.7	Balance hídrico de la cuenca del río Camaná Majes	147
	7.6.8	Balance hídrico de las subcuencas del río Camaná Majes	148
7.	7 CA	RACTERIZACIÓN DE LA OFERTA HÍDRICA PRESENTE EN LA CUENCA DEL RÍO OCOÑA A ESCALA DE SUBCUENCAS	154
	7.7.1	Caracterización de la oferta hídrica Subcuenca Pacapausa	155
	7.7.2	Caracterización de la oferta hídrica Sub 2 - Intercuenca	156
	7.7.3	Caracterización de la oferta hídrica Sub 3 - Subcuenca Pallancata	157
	7.7.4	Caracterización de la oferta hídrica Sub 4 - Subcuenca Pacchichaca	157
	7.7.5	Caracterización de la oferta hídrica Sub 5- Subcuenca Alto Cotahuasi	158
	7.7.6	Caracterización de la oferta hídrica Sub 6 - Subcuenca De Sumana	159
	7.7.7	Caracterización de la oferta hídrica Sub 7 – Subcuenca Pampamarca	159
	7.7.8	Caracterización de la oferta hídrica Sub 8 - Subcuenca Mirmaca	160
	7.7.9	Caracterización de la oferta hídrica Sub 9 - Unidad Hidrográfica 13691	161
	7.7.10	Caracterización de la oferta hídrica Sub 10 - Subcuenca Oyolo	161
	7.7.11	Caracterización de la oferta hídrica Sub 11 - Subcuenca Parinacochas	162
	7.7.12	Caracterización de la oferta hídrica Sub 12 - Subcuenca Maran	163
	7.7.13	Caracterización de la oferta hídrica Sub 13 - Intercuenca Cotahuasi	163
	7.7.14	Caracterización de la oferta hídrica Subcuenca Chichas	164
	7.7.15	Caracterización de la oferta hídrica Sub 15 - Subcuenca Churunga	165
	7.7.16	Caracterización de la oferta hídrica Sub 16 - Subcuenca Chalhuane	165
	7.7.17	Caracterización de la oferta hídrica Subcuenca Esbilla	166
	7.7.18	Caracterización de la oferta hídrica Sub 18 - Subcuenca Bajo Churunga	167
	7.7.19	Caracterización de la oferta hídrica Sub 19 - Intercuecna Medio Bajo Ocoña	167
	7.7.20	Caracterización de la oferta hídrica Sub 20 - Subcuenca Bajo Ocoña	168
7.	8 CA	racterización de la oferta hídrica presente en la cuenca del Camana M ajes a escala de subcuenca	169
	7.8.1	Caracterización de la oferta hídrica Sub 1 - Intercuenca Bajo Camana	170
	7.8.2	Caracterización de la oferta hídrica Sub 2 - Subcuenca Molles	170
	7.8.3	Caracterización de la oferta hídrica Sub 3 - Subcuenca Puluvinas	171
	7.8.4	Caracterización de la oferta hídrica Subcuenca 4	172
	7.8.5	Caracterización de la oferta hídrica Subcuenca 5	172
	7.8.6	Caracterización de la oferta hídrica Subcuenca 6	173
	7.8.7	Caracterización de la oferta hídrica Sub 7 - Subcuenca Ayo	174
	7.8.8	Caracterización de la oferta hídrica Subcuenca 8	174
	7.8.9	Caracterización de la oferta hídrica Subcuenca 9	175
	7.8.10	Caracterización de la oferta hídrica Sub 10 – Subcuenca Capiza	176
	7.8.11	Caracterización de la oferta hídrica Sub 11 - Intercuenca Colca Camana	176
	7.8.12	Caracterización de la oferta hídrica Subcuenca 12	177
	7.8.13	Caracterización de la oferta hídrica Llapa	
	7.8.14	Caracterización de la oferta hídrica Subcuenca 14	178
	7.8.15	Caracterización de la oferta hídrica Sub 15 - Subcuenca Medio Colca	179
	7.8.16	Caracterización de la oferta hídrica Subcuenca 16	180

	7.8.17	Caracterización de la oferta hídrica Sub-17 Subcuenca Negrillo	180
	7.8.18	Caracterización de la oferta hídrica Subcuenca 18	
	7.8.19	Caracterización de la oferta hídrica Sub 19- Intercuenca Medio Alto Colca	182
	7.8.20	Caracterización de la oferta hídrica Sub 20 - Subcuenca El Pañe Negrillo	182
	7.8.21	Caracterización de la oferta hídrica Sub21- Subcuenca Condoroma	183
	7.8.22	Caracterización de la oferta hídrica Subcuenca 22	184
	7.8.23	Caracterización de la oferta hídrica Sub 23 - Subcuenca Maquerullo	184
	7.8.24	Caracterización de la oferta hídrica Sub 24 - Subcuenca Chalhuanca	185
	7.8.25	Caracterización de la oferta hídrica Sub 25 - Subcuenca Molloco	186
	7.8.26	Caracterización de la oferta hídrica Sub 26 - Subcuenca Andahua	186
	7.8.27	Caracterización de la oferta hídrica Subcuenca 27	187
	7.9 CONC	CLUSIONES	189
8.	. ESCENARI	OS DE CAMBIO CLIMATICO	242
	8.1 Mod	ELOS GLOBALES Y REGIONALES DE CAMBIO CLIMATIC	2/12
		ELIZACIÓN REGIONAL CON WRF PARA GENERACIÓN DE ESCENARIOS CLIMÁTICOS EN LA REGIÓN AREQUIPA Y	242
		ÍA Y CAMANA-MAJES	2/12
		elización Regional con WRF para generación de escenarios climáticos en la Región Arequipa y	243
		ÍA Y CAMANA-MAJES	246
		NARIOS DE PRECIPITACIÓN Y TEMPERATURA	
		ambios proyectados de precipitación a escala temporal	
	8.2.1.1 8.2.1.1	Cambios proyectados de precipitación a escula temporal	
	8.2.1.1	Cambios proyectados de precipitación en la cuenca Ocoña	
	8.2.1.3 8.2.2 Ca	Cambios proyectados de precipitación en la cuenca Ocoña	
		ambios proyectados en la temperatura mínima a escala temporal	
	8.2.2.1	Cambios proyectados de temperatura mínima en la región Arequipa	
	8.2.2.2	Cambios proyectados de temperatura mínima en la cuenca Ocoña	
	8.2.2.3	Cambios proyectados de temperatura mínima en la cuenca Camana	
		ambios proyectados en la temperatura máxima a escala temporal	
	8.2.3.1	Cambios proyectados de temperatura máxima en la región Arequipa	
	8.2.3.2	Cambios proyectados de temperatura máxima en la cuenca Ocoña	
	8.2.3.3	Cambios proyectados de temperatura máxima en la cuenca Camana	
		NARIOS DE CAMBIOS DE PRECIPITACIÓN Y TEMPERATURA A ESCALA ESPACIAL	
		ambios proyectados de precipitación a escala espacial	
	8.3.1.1	Cambios de precipitación en la región Arequipa	
	8.3.1.2	Cambios de precipitación en la cuenca Ocoña	
	8.3.1.3	Cambios de precipitación en la cuenca Camana	
		ambios proyectados de Temperatura Mínima escala espacial	
	8.3.2.1	Cambios proyectados de Temperatura Mínima en la región Arequipa	
	8.3.2.2	Cambios proyectados de Temperatura Mínima en la Cuenca Ocoña	
	8.3.2.3	Cambios proyectados de Temperatura Mínima en la Cuenca Camana	
		ambios proyectados de la Temperatura Máxima a escala espacial	
	8.3.3.1	Cambios de Temperatura Máxima en la región Arequipa	
	8.3.3.2	Cambios de Temperatura Máxima en la cuenca Ocoña	
	8.3.3.3	Cambios de Temperatura Máxima en la cuenca Camana	
		NARIOS DE PRECIPITACIÓN BASADOS EN EL ÍNDICE SPÍ CUENCA DEL RIO OCOÑA	
		Pl 3 en las Subcuencas 1 al 20 de la cuenca del río Ocoña	
		Pl 12 en las Subcuencas 1 al 20 de la cuenca del rio Ocoña	
		NARIOS DE PRECIPITACIÓN BASADOS EN EL ÍNDICE SPI CUENCA DEL RIO CAMANA	
	251 SE	21.3 en las Subcuencas 1 al 27 de la cuenca del río Camana	303

	8.5.2	SPI 12 en las Subcuencas 1 al 27 de la cuenca del río Camana	308
8.0	6 Es	SCENARIOS DE DISPONIBILIDAD HÍDRICA FUTURA	313
	8.6.1	Definiciones preliminares sobre procesos metodológicos	313
	8.6.1.1	Clasificacion supervisada de uso de suelo	313
	8.6.1.2	Modelos predictivos de cambio de uso de suelo	315
	8.6.1.3	Modelos de regresión	315
	8.6.1.4	Modelos de transición	316
	8.6.2	Flujograma metodológico	316
	8.6.2.1	Caracterizacion de la cobertura del suelo en las cuencas Ocoña y Camana	317
	8.6.2.2	Prediccion de escenarios de cobertura suelo en las cuencas Ocoña y Camana	319
	8.6.2.3	Variables explicativas	321
	8.6.2.4	Entrenamiento de la red neuronal y simulación mediante autómata celulares	321
	8.6.2.5	Implementacion del modelo hidrológico SWAT	322
	8.6.3	Simulacion para el escenario futuro Periodo 2011-2065 cuenca del río Ocoña	324
	8.6.4	Simulación para el escenario futuro periodo 2011-2065 cuenca del rio Camana	331
8.	7 C C	ONCLUSIONES Y RECOMENDACIONES	339
	8.7.1	Conclusiones	339
	8.7.1.1	Sobre escenarios de Precipitacion	339
	8.7.1.2	Sobre escenarios de SPI	340
	8.7.1.3	Sobre escenarios de disponibilidad hídrica período 2011-2065	340
	872	Recomendaciones	341

LISTA DE FIGURAS

Figura 2-1 Poblacion con acceso a agua potable, 2007	6
Figura 2-2 Principales embalses en la cuenca Camaná Majes. a) Represa Condoroma, b) El Pañe y o	c)
Dique Los Españoles respectivamente	16
Figura 2-3 Estación Hidrológica HLG-Sibayo en la cuenca alta del río Colca	16
Figura 3-1 Datos climáticos provenientes de registros de estaciones meteorológicas de la red terre	ena
del SENAMHI. Estaciones convencionales consideradas 81 para la ejecución del estudio	20
Figura 3-2. Flujograma metodológico para la caracterización hidroclimática	22
Figura 3-3 Procesos Control de Calidad de datos y homogenización de series climáticas para estud	ios
de Variabilidad climática y Escenarios de Cambio climático en la región Arequipa. Fuente: SENAMI	HI-
SEDAPAL/DMA-SMN, 2015. Segundo Informe Técnico de SEDAPAL. Actualizado, 2017	26
Figura 3-4 Flujograma del método de interpolación espacial	28
Figura 4-1. Unidades hidrográficas delimitadas en la cuenca del río Ocoña	33
Figura 4-2. Unidades hidrográficas delimitadas en la cuenca Camaná-Majes	38
Figura 5-1 Climatología de la Precipitación mensual en la cuenca Ocoña	
Figura 5-2 Variación espacial de la precipitación anual en la cuenca Ocoña	46
Figura 5-3 Precipitación anual en unidades hidrográficas. En barras color verde el sistema del río	
Ocoña, en azul el sistema de Cotahuasi y en amarillo el sistema del rio Cotahuasi	47
Figura 5-4 Precipitación media mensual y multianual por década en la cuenca Ocoña	48
Figura 5-5 Climatología de la Precipitación mensual en la cuenca Camaná-Majes	49
Figura 5-6 Variación espacial de la precipitación anual en la cuenca Camaná-Majes	50
Figura 5-7 Precipitación anual en Unidades Hidrográficas. En barra color verde sistema fluvial del r	río
Camaná y en barra color amarillo del sistema fluvial del río Colca	51
Figura 5-8 Precipitación media mensual y multianual por década en la cuenca Camaná-Majes	52
Figura 5-9 Ciclo anual de la temperatura máxima y mínima promedio mensual en la cuenca Ocoña	1. 53
Figura 5-10 Variación espacial de la temperatura máxima anual en la cuenca Ocoña	54
Figura 5-11 Variación espacial de la temperatura mínima anual en la cuenca Ocoña	54
Figura 5-12 Climatología de la Temperatura máxima promedio anual en unidades hidrográficas de	la la
cuenca Ocoña	55
Figura 5-13 Climatología de la Temperatura mínima promedio anual en unidades hidrográficas de	la
cuenca Ocoña	56
Figura 5-14 Ciclo anual de la temperatura máxima y mínima media mensual en la cuenca Camaná-	-
majes	58
Figura 5-15 Variación espacial de la temperatura máxima anual en la cuenca Camaná-Majes	58
Figura 5-16 Variación espacial de la temperatura mínima anual en la cuenca Camaná Majes	59
Figura 5-17 Temperatura máxima en lasunidades hidrográficas de la cuenca Camaná-Majes	60
Figura 5-18 Temperatura mínima en las diferentes unidades hidrográficas de la cuenca Camaná-	C1
Majes	
Figura 5-19 Gradiente térmico mensual regional de la temperatura máxima del aire	
Figura 5-20 Gradiente térmico mensual regional de la temperatura mínima del aire	
Figura 5-21 Climatología de la Eto promedio mensual en unidades hidrográficas de la cuenca Ocor	
Figura 5-22 Variación espacial de la Eto promedio anual de la cuenca Ocoña	
· · · · · · · · · · · · · · · · · · ·	
Figura 5-23 Climatología anual de la Eto en unidades hidrográficas de la cuenca Ocoña	50

Figura 5-24 Climatología de la Eto promedio mensual en unidades hidrográficas de la cuenca Cam	
Figura 5-25 Variación espacial de la Eto promedio anual de la cuenca Camana	
Figura 5-26 Climatología anual de la Eto en unidades hidrográficas de la cuenca Camaná-Majes	
Figura 6-1 Tendencias de precipitación para los periodos anual, hidrológico, avenida y estiaje en l	
región de Arequipa en %	
Figura 6-2 Tendencias de precipitación a nivel trimestral en la región de Arequipa en %	
Figura 6-3 Tendencias de precipitación para los periodos anual, hidrológico, avenida y estiaje en l	
cuenca Ocoña en %	
Figura 6-4 Tendencias de precipitación a nivel trimestral en la cuenca Ocoña en %	
Figura 6-5 Tendencias de precipitación a nivel trimestral en la cuenca Camaná-Majes en %	
Figura 6-6 Tendencias de precipitación para los periodos anual, hidrológico, avenida y estiaje en l	
cuenca Camaná-Majes en %	
Figura 6-7 Tendencias de temperatura máxima para los periodos anual, hidrológico, avenida y est	-
en la región de Arequipa en °C/década	80
Figura 6-8 Tendencias de temperatura máxima a nivel trimestral en la región de Arequipa en	
°C/década	81
Figura 6-9 Tendencias de temperatura máxima para los periodos anual, hidrológico, avenida y est	•
en la cuenca Ocoña en°C/década	82
Figura 6-10 Tendencias de temperatura máxima a nivel trimestral en la cuenca Ocoña °C/década.	83
Figura 6-11 Tendencias de temperatura máxima para los periodos anual, hidrológico, avenida y	
estiaje en la cuenca Camana-Majes °C/década	84
Figura 6-12 Tendencias de temperatura máxima a nivel trimestral en la cuenca de Camana-Majes	s en
°C/década	85
Figura 6-13. Tendencias de temperatura mínima para los periodos anual, hidrológico, avenida y	
estiaje en la región de Arequipa	87
Figura 6-14. Tendencias de temperatura mínima a nivel trimestral en la región de Arequipa	88
Figura 6-15. Tendencias de temperatura mínima para los periodos anual, hidrológico, avenida y	
estiaje en cuenca Ocoña	
Figura 6-16. Tendencias de temperatura mínima a nivel trimestral en cuenca Ocoña	90
Figura 6-17. Tendencias de temperatura mínima para los periodos anual, hidrológico, avenida y	
estiaje en cuenca Camana-Majes	91
Figura 6-18. Tendencias de temperatura mínima a nivel trimestral en cuenca Camana-Majes	92
Figura 6-19. Tendencias del indicador CDD (Días Consecutivos Secos) para la región de Arequipa,	
cuenca del Camaná-Majes y cuenca de Ocoña	95
Figura 6-20. Series de CDD (Días Consecutivos Secos) para las estaciones de Cabanaconde (cuenc	a
Camaná-Majes) y Chinchayllapa (cuenca de Ocoña), se observa una tendencia de disminución	
significativa de CDD en Cabanoconde a razón de 1.1 mm/año y aumento no significativo en	
Chinchayllapa a razón de 0.85 mm/año	96
Figura 6-21. Tendencias del indicador CWD (Días Consecutivos Húmedos) para la región Arequipa	a,
cuenca del Camaná-Majes y cuenca de Ocoña	97
Figura 6-22. Tendencias del indicador R95pTOT (Precipitaciones intensas) para la región Arequipa	ì,
cuenca del Camaná-Majes y cuenca de Ocoña	98
Figura 6-23. Series de R95pTOT (Precipitaciones intensas) para las estaciones de Chivay (cuenca	
Camaná-Majes) y Pauza (cuenca de Ocoña), se observa una tendencia de aumento no significativ	o de

las precipitaciones intensas en Chivay a razón de 0.21°C/año y una tendencia de disminución no
signifcativa en Pauza a razón de 0.14°C/año
Figura 6-24. Tendencias del indicador R99pTOT (precipitaciones extremadamente o muy intensas)
para la región de estudio, región de Arequipa, cuenca del Camaná-Majes y cuenca de Ocoña 100
Figura 6-25. Tendencias del indicador tx10p (Días fríos) para la región de estudio, región de Arequipa,
cuenca del Camaná-Majes y cuenca de Ocoña
Figura 6-26. Tendencias del indicador tx90p (Días cálidos) para la región de estudio, región de
Arequipa, cuenca del Camaná-Majes y cuenca de Ocoña
Figura 6-27. Series de tx90p (Días cálidos) para las estaciones de Chivay (cuenca Camaná-Majes) y
Lampa (cuenca de Ocoña), se observa una tendencia de aumento significativo del número de días
cálidos en Chivay a razón de 2 días/año y aumento no significativo a razón de 0.5 días/año 103
Figura 6-28. Tendencias del indicador tn10p (Noche frías) para la región de estudio, región de
Arequipa, cuenca del Camaná-Majes y cuenca de Ocoña
Figura 6-29. Tendencias del indicador tn90p (Noches cálidas) para la región de estudio, región de
Arequipa, cuenca del Camaná-Majes y cuenca de Ocoña
Figura 6-30. Series de tn90p (Noches cálidas) para las estaciones de Chivay (cuenca Camaná-Majes) y
Lampa (cuenca de Ocoña), se observa una tendencia de aumento significativo de las noches frías en
Chivay a razón de 1 día/año y de 0.8 día/año en Lampa
Figura 7-1 Representación del ciclo hidrológico en SWAT
Figura 7-2 Flujograma de la metodología del presente informe para las dos cuencas de aplicación 117
Figura 7-3 Distribución temporal de los caudales diarios para el periodo 01/01/2006 – 31/12/2016 en la estación Puente Ocoña
Figura 7-4 Distribución temporal de los caudales diarios para el periodo 01/01/2002 – 31/12/2016 en la estación Huatiapa
Figura 7-5 Caudales medios mensuales de salida del reservorio de Condoroma periodo 2009-2016.
Figura 7-6 Esquema de construcción del modelo SWAT. Variables de entrada y de salida
Figura 7-7 Topología del Modelo SWAT para la cuenca del rio Ocoña. Estación de calibración Puente
Ocoña
Figura 7-8 Coberturas requeridas para la creación del modelo SWAT para la Cuenca del río Ocoña a)
Pendientes, subdivisión de la cuenca en 5 clases, b) Tipo de suelo, a partir de los datos WorlSoil1km y
reclasificado y c) Uso de suelo, a partir del producto GlobalLand30 y reclasificado para SWAT 2012.
Figura 7-9 Topología del Modelo SWAT para la cuenca del rio Camaná Majes. Estación de calibración
Huatiapa
Figura 7-10. Cobertura requerida para la creación del modelo SWAT para la cuenca del río Camaná
Majes. a) Pendientes, subdivisión de la pendiente de la cuenca en 5 clases, b) Tipo de suelo a partir
de los datos WorlSoil1km y reclasificado según la base de datos SWAT 2012 y Uso de suelo a partir
del producto GlobalLand30 y reclasificado según la base de datos SWAT 2012
Figura 7-11 Simulación inicial del modelo SWAT en la estación Puente Ocoña
·
• • •
Figura 7-13 Comparativa de los caudales medios diarios simulados respecto al observado
Figura 7-12. Comparativa de los caudales medios diarios simulados respecto al observado. Se indica las métricas de desempeño y la banda de incertidumbre al intervalo de predicción del 95% [995PPU]

Figura 7-14. Evolución temporal promedio diario de precipitación, evapotranspiración, rendimie hídrico, contribución de la escorrentía superficial y contribución de flujo base a nivel de la cuenc	
integral Ocoña	136
Figura 7-15 Distribución espacial a nivel de HRUs de: a) rendimiento hídrico (WYLD en mm)	
(Izquierda), b) contribución de flujo base (derecha superior) y c) contribución de la escorrentía	
superficial (derecha inferior).	
Figura 7-16 Representación de los caudales medios mensuales. En la parte superior, los caudales	
medios para cada subcuenca. En la parte inferior, los caudales medios para toda la cuenca del río	
Ocoña. Período de evaluación 1981-2010.	
Figura 7-17 Oferta hídrica anual en m³/s en cada unidad hidrográfica de la cuenca Ocoña periodo	
1981-2010	
Figura 7-18 Simulación inicial del modelo SWAT con punto de calibración en la estación Huatiapa	
Figura 7-19. Comparativa de los caudales medios diarios simulados respecto al observado. Se inc	
las métricas de desempeño y la banda de incertidumbre al intervalo de predicción del 95% [995F	_
Figura 7-20. Comparativa de los caudales medios diarios simulados respecto al observado	
Figura 7-21 Evolución temporal promedio diario de precipitación, evapotranspiración, rendimier	ito
hídrico, contribución de la escorrentía superficial y contribución de flujo base a nivel de la cuenc	
integral Camaná-Majes	148
Figura 7-22 Distribución espacial a nivel de HRUs de: a) rendimiento hídrico (WYLD en mm)	
(Izquierda), b) contribución de flujo base (derecha superior) y c) contribución de la escorrentía	
superficial (derecha inferior)	150
Figura 7-23 Representación de los caudales medios mensuales. Presentación de la subcuenca un	o a
la dieciocho del modelo SWAT de Camaná Majes. Período de evaluación 1981-2010	151
Figura 7-24 Representación de los caudales medios mensuales. En la parte superior, Presentació	n de
la subcuenca diecinueve a laveintisiete del modelo SWAT de Camaná Majes. En la parte inferior,	los
caudales medios para toda la cuenca del río Camaná Majes. Período de evaluación 1981-2010	152
Figura 7-25 Oferta hídrica anual en m³/s en cada unidad hidrográfica de la cuenca Camaná-Maje	S
periodo 1981-2010	
Figura 7-26 Caudal promedio anual en la línea base 1981-2016	155
Figura 7-27 Síntesis de caudales anuales generados en la Sub1 - Subcuenca Pacapausa	155
Figura 7-28 Síntesis de caudales anuales generados en la Sub 2 - Intercuenca	156
Figura 7-29 Síntesis de caudales anuales generados en la Sub 3 - Subcuenca Pallancata	157
Figura 7-30 Síntesis de caudales anuales generados en la Sub 4 - subcuenca Pacchichaca	158
Figura 7-31 Síntesis de caudales anuales generados en la Sub 5 - Subcuenca Alto Cotahuasi	158
Figura 7-32 Síntesis de caudales anuales generados en la Sub 6 - Subcuenca De Sumana	159
Figura 7-33 Síntesis de caudales anuales generados en la Sub 7 - Subcuenca Pampamarca	160
Figura 7-34 Síntesis de caudales anuales generados en la Sub 8 - Subcuenca Mirmaca	160
Figura 7-35 Síntesis de caudales anuales generados en la Sub 9 - Unidad Hidrográfica 13691	161
Figura 7-36 Síntesis de caudales anuales generados en la Sub 10 - Subcuenca Oyolo	162
Figura 7-37 Síntesis de caudales anuales generados en la Sub 11 - Subcuenca Parinacochas	162
Figura 7-38 Síntesis de caudales anuales generados en la Sub 12 - Subcuenca Maran	163
Figura 7-39 Síntesis de caudales anuales generados en la Sub 13- Intercuenca Cotahuasi	164
Figura 7-40 Síntesis de caudales anuales generados en la Sub 14 - Subcuenca Chichas	164
Figura 7-41 Síntesis de caudales anuales generados en la Sub 15 - Subcuenca Churunga	165

Figura 7-42 Síntesis de caudales anuales generados en la Sub 16 - Subcuenca Chalhuane	. 166
Figura 7-43 Síntesis de caudales anuales generados en la Sub 17 - Subcuenca Esbilla	. 166
Figura 7-44 Síntesis de caudales anuales generados en la Sub 18- Subcuenca Bajo Churunga	. 167
Figura 7-45 Síntesis de caudales anuales generados en la Sub 19 - Intercuenca Medio Bajo Ocoña	. 168
Figura 7-46 Síntesis de caudales anuales generados en la subcuenca Bajo Ocoña	. 168
Figura 7-47 Caudal promedio anual en la línea base 1981-2016	. 169
Figura 7-48 Síntesis de caudales anuales generados en la Sub 1- Intercuenca Bajo Camana	. 170
Figura 7-49 Síntesis de caudales anuales generados en la Sub 2 - Subcuenca Molles	. 171
Figura 7-50 Síntesis de caudales anuales generados en la Sub 3 - Subcuenca Puluvinas	. 171
Figura 7-51 Síntesis de caudales anuales generados en la subcuenca 4	. 172
Figura 7-52 Síntesis de caudales anuales generados en la subcuenca 5	
Figura 7-53 Síntesis de caudales anuales generados en la subcuenca 6	. 173
Figura 7-54 Síntesis de caudales anuales generados en la Sub 7 - subcuenca Ayo	. 174
Figura 7-55 Síntesis de caudales anuales generados en la subcuenca 8	
Figura 7-56 Síntesis de caudales anuales generados en la subcuenca 9	. 175
Figura 7-57 Síntesis de caudales anuales generados en la Sub 10 - Subcuenca Capiza	. 176
Figura 7-58 Síntesis de caudales anuales generados en la Sub 11 - Intercuenca Colca Camana	. 177
Figura 7-59 Síntesis de caudales anuales generados en la subcuenca 12	. 177
Figura 7-60 Síntesis de caudales anuales generados en la Sub 13 - Subcuenca Llapa	. 178
Figura 7-61 Síntesis de caudales anuales generados en la subcuenca 14	. 179
Figura 7-62 Síntesis de caudales anuales generados en la Sub 15 - Subcuenca Medio Colca	. 179
Figura 7-63 Síntesis de caudales anuales generados en la subcuenca 16	. 180
Figura 7-64 Síntesis de caudales anuales generados en la Sub 17 - Subcuenca Negrillo	
Figura 7-65 Síntesis de caudales anuales generados en la subcuenca 18	. 181
Figura 7-66 Síntesis de caudales anuales generados en la Sub 19- Intercuenca Medio Alto Colca	. 182
Figura 7-67 Síntesis de caudales anuales generados en la Sub 20- Subcuenca El Pañe Negrillo	. 183
Figura 7-68 Síntesis de caudales anuales generados en la Sub 21- Subcuenca Condoroma	
Figura 7-69 Síntesis de caudales anuales generados en la subcuenca 22	. 184
Figura 7-70 Síntesis de caudales anuales generados en la Sub 23- Subcuenca Maquerullo	
Figura 7-71 Síntesis de caudales anuales generados en la Sub 24- Subcuenca Chalhuanca	. 185
Figura 7-72 Síntesis de caudales anuales generados en la Sub 25 - Subcuenca Molloco	. 186
Figura 7-73 Síntesis de caudales anuales generados en la Sub 26 - Subcuenca Andahua	. 187
Figura 7-74 Síntesis de caudales anuales generados en la Sub 27 - Subcuenca 27	. 187
Figura 7-75. Evolución temporal promedio diario para la Subcuenca 1 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	າ de
flujo base	. 194
Figura 7-76 Evolución temporal promedio diario para la Subcuenca 2 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	
flujo base	. 195
Figura 7-77 Evolución temporal promedio diario para la Subcuenca 3 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	
flujo base	. 196
Figura 7-78 Evolución temporal promedio diario para la Subcuenca 4 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	
flujo base	. 197

Figura 7-79. Evolución temporal promedio diario para la Subcuenca 5 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	de
flujo base	. 198
Figura 7-80. Evolución temporal promedio diario para la Subcuenca 6 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	de
flujo baseflujo base	
Figura 7-81. Evolución temporal promedio diario para la Subcuenca 7 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	ah d
flujo base.	
Figura 7-82. Evolución temporal promedio diario para la Subcuenca 8 para la precipitación,	200
	ـ اـ
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	
flujo base.	. 201
Figura 7-83. Evolución temporal promedio diario para la Subcuenca 9 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	
flujo base	. 202
Figura 7-84. Evolución temporal promedio diario para la Subcuenca 10 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	ı de
flujo base	. 203
Figura 7-85. Evolución temporal promedio diario para la Subcuenca 11 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	de
flujo base	204
Figura 7-86. Evolución temporal promedio diario para la Subcuenca 12 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	de
flujo baseflujo base	
Figura 7-87. Evolución temporal promedio diario para la Subcuenca 13 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	ı de
flujo base.	
Figura 7-88. Evolución temporal promedio diario para la Subcuenca 14 para la precipitación,	200
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	do
flujo base.	207
Figura 7-89. Evolución temporal promedio diario para la Subcuenca 15 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	
flujo base	. 208
Figura 7-90. Evolución temporal promedio diario para la Subcuenca 16 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	
flujo base	. 209
Figura 7-91. Evolución temporal promedio diario para la Subcuenca 17 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	de
flujo base	210
Figura 7-92. Evolución temporal promedio diario para la Subcuenca 18 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	de
flujo baseflujo base	
Figura 7-93. Evolución temporal promedio diario para la Subcuenca 19 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	de
flujo base.	

Figura 7-94. Evolución temporal promedio diario para la Subcuenca 20 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
Figura 7-95. Evolución temporal promedio diario para la Subcuenca 1 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
Figura 7-96. Evolución temporal promedio diario para la Subcuenca 2 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
Figura 7-97. Evolución temporal promedio diario para la Subcuenca 3 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
•
Figura 7-98. Evolución temporal promedio diario para la Subcuenca 4 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base217
Figura 7-99. Evolución temporal promedio diario para la Subcuenca 5 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
Figura 7-100. Evolución temporal promedio diario para la Subcuenca 6 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
Figura 7-101. Evolución temporal promedio diario para la Subcuenca 7 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
Figura 7-102. Evolución temporal promedio diario para la Subcuenca 8 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
Figura 7-103. Evolución temporal promedio diario para la Subcuenca 9 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
Figura 7-104. Evolución temporal promedio diario para la Subcuenca 10 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
Figura 7-105. Evolución temporal promedio diario para la Subcuenca 11 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
Figura 7-106. Evolución temporal promedio diario para la Subcuenca 12 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
Figura 7-107. Evolución temporal promedio diario para la Subcuenca 13 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
Figura 7-108. Evolución temporal promedio diario para la Subcuenca 14 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
fluio base

Figura 7-109. Evolución temporal promedio diario para la Subcuenca 15 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
Figura 7-110. Evolución temporal promedio diario para la Subcuenca 16 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
·
Figura 7-111. Evolución temporal promedio diario para la Subcuenca 17 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base230
Figura 7-112. Evolución temporal promedio diario para la Subcuenca 18 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base231
Figura 7-113. Evolución temporal promedio diario para la Subcuenca 19 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
Figura 7-114. Evolución temporal promedio diario para la Subcuenca 20 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
Figura 7-115. Evolución temporal promedio diario para la Subcuenca 21 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
Figura 7-116. Evolución temporal promedio diario para la Subcuenca 22 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
Figura 7-117. Evolución temporal promedio diario para la Subcuenca 23 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
Figura 7-118. Evolución temporal promedio diario para la Subcuenca 24 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base237
Figura 7-119. Evolución temporal promedio diario para la Subcuenca 25 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
Figura 7-120. Evolución temporal promedio diario para la Subcuenca 26 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
Figura 7-121. Evolución temporal promedio diario para la Subcuenca 27 para la precipitación,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de
flujo base
Figura 8-1 Modelización climática regional con WRF-ARW V4 para generación de escenarios
climáticos a escala nacional a resolución espacial de 16 Km y aplicado para la Región Arequipa y
cuencas Ocoña y Camana-Majes en el marco del Proyecto Apoyo a la Gestión del Cambio Climático
(línea discontinua). Forzantes del modelo regional WRF-ARW V4 datos numéricos del modelo
HadGEM2-ES escenario de altas emisiones RCP8.5. Fuente: SENAMHI-SEDAPAL /DMA-SMN, 2015.
Actualizada SENAMHI-SMN, 2017

Figura 8-2 Metodologia para la generación de escenarios de camibo climatico	245
Figura 8-3 Cambios de la precipitación 2016-2065 relativo a 1981-2005 en la Estación Punta Atico	_
Región Arequipa, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5) de
Gases de Efecto Invernadero, escala trimestral a) DEF, b) MAM, c) JJA y d) SON	248
Figura 8-4 Cambios de la precipitación 2016-2065 relativo a 1981-2005 en la Estación Punta Atico	_
Región Arequipa, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5) de
Gases de Efecto Invernadero, escalas: a) avenida, b) estiaje, c) anual y d) año hidrológico	249
Figura 8-5 Cambios de la precipitación 2016-2065 relativo a 1981-2005 en Estación Chinchayllapa	_
cuenca Ocoña, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5) d	
Gases de Efecto Invernadero, escala trimestral a) DEF, b) MAM, c) JJA y d) SON	250
Figura 8-6 Cambios de la precipitación 2016-2065 relativo a 1981-2005 en Estación Chinchayllpa –	
cuenca Ocoña, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5) d	e
Gases de Efecto Invernadero, escalas: a) avenida, b) estiaje, c) anual y d) año hidrológico	
Figura 8-7 Cambios de la precipitación 2016-2065 relativo a 1981-2005 en Estación Salamanca –	
cuenca Ocoña, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5) d	le
Gases de Efecto Invernadero, escala trimestral a) DEF, b) MAM, c) JJA y d) SON	
Figura 8-8 Cambios de la precipitación 2016-2065 relativo a 1981-2005 en Estación Salamanca –	
cuenca Ocoña, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5) d	e
Gases de Efecto Invernadero, escalas: a) avenida, b) estiaje, c) anual y d) año hidrológico	253
Figura 8-9 Cambios de la precipitación 2016-2065 relativo a 1981-2005 en Estación Aplao – cuenc	
Camaná, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5) de Gase	es
de Efecto Invernadero, escala trimestral a) DEF, b) MAM, c) JJA y d) SON	254
Figura 8-10 Cambios de la precipitación 2016-2065 relativo a 1981-2005 en Estación Aplao – cuen	
Camaná, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5) de Gase	es
de Efecto Invernadero, escalas: a) avenida, b) estiaje, c) anual y d) año hidrológico	255
Figura 8-11 Cambios de la precipitación 2016-2065 relativo a 1981-2005 en Estación Madrigal –	
cuenca Camaná, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5)	de
Gases de Efecto Invernadero, escala trimestral a) DEF, b) MAM, c) JJA y d) SON	256
Figura 8-12 Cambios de la precipitación 2016-2065 relativo a 1981-2005 en Estación Madrigal –	
cuenca Camaná, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5)	de
Gases de Efecto Invernadero, escalas: a) avenida, b) estiaje, c) anual y d) año hidrológico	257
Figura 8-13 Cambios de la temperatura mínima 2016-2065 relativo a 1981-2005 en Estación Carav	⁄eli
– Región Arequipa, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4	.5)
de Gases de Efecto Invernadero, escala trimestral a) DEF, b) MAM, c) JJA y d) SON	
Figura 8-14 Cambios de la temperatura mínima 2016-2065 relativo a 1981-2005 en la Estación	
Caraveli – Región Arequipa, para los escenarios de altas emisiones (RCP8.5) y moderadas emisione	es
(RCP4.5) de Gases de Efecto Invernadero, escalas: a) avenida, b) estiaje, c) anual y d) año hidrológ	
Figura 8-15 Cambios de la temperatura mínima 2016-2065 relativo a 1981-2005 en Estación Imata	
Región Arequipa, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5	
Gases de Efecto Invernadero, escala trimestral a) DEF, b) MAM, c) JJA y d) SON	
Figura 8-16 Cambios de la temperatura mínima 2016-2065 relativo a 1981-2005 en la Estación Ima	
 Región Arequipa, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4 	
de Gases de Efecto Invernadero, escalas: a) avenida, b) estiaje, c) anual y d) año hidrológico	

Figura 8-17 Cambios de la temperatura mínima 2016-2065 relativo a 1981-2005 en Estación La	
Angostura – Región Arequipa, para los escenarios de altas emisiones (RCP8.5) y moderadas	
emisiones (RCP4.5) de Gases de Efecto Invernadero, escala trimestral a) DEF, b) MAM, c) JJA y d)	
SON26	63
Figura 8-18 Cambios de la temperatura mínima 2016-2065 relativo a 1981-2005 en la Estación La	
Angostura – Región Arequipa, para los escenarios de altas emisiones (RCP8.5) y moderadas	
emisiones (RCP4.5) de Gases de Efecto Invernadero, escalas: a) avenida, b) estiaje, c) anual y d) año	
hidrológico26	64
Figura 8-19 Cambios de la temperatura mínima 2016-2065 relativo a 1981-2005 en Estación Punta	
Atico – Región Arequipa, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones	
(RCP4.5) de Gases de Efecto Invernadero, escala trimestral a) DEF, b) MAM, c) JJA y d) SON 26	65
Figura 8-20 Cambios de la temperatura mínima 2016-2065 relativo a 1981-2005 en la Estación Punta	a
Atico – Región Arequipa, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones	
(RCP4.5) de Gases de Efecto Invernadero, escalas: a) avenida, b) estiaje, c) anual y d) año hidrológico	o.
20	66
Figura 8-21 Cambios de la temperatura mínima 2016-2065 relativo a 1981-2005 en Estación	
Cotahuasi – cuenca Ocoña, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones	
(RCP4.5) de Gases de Efecto Invernadero, escala trimestral a) DEF, b) MAM, c) JJA y d) SON 26	67
Figura 8-22 Cambios de la temperatura mínima 2016-2065 relativo a 1981-2005 en la Estación	
Cotahuasi – cuenca Ocoña, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones	
(RCP4.5) de Gases de Efecto Invernadero, escalas: a) avenida, b) estiaje, c) anual y d) año hidrológico	o.
26	68
Figura 8-23 Cambios de la temperatura mínima 2016-2065 relativo a 1981-2005 en Estación Aplao –	-
cuenca Camana, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5) de	e
Gases de Efecto Invernadero, escala trimestral a) DEF, b) MAM, c) JJA y d) SON26	69
Figura 8-24 Cambios de la temperatura mínima 2016-2065 relativo a 1981-2005 en la Estación Aplac	O
– cuenca Camana, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5)	
de Gases de Efecto Invernadero, escalas: a) avenida, b) estiaje, c) anual y d) año hidrológico 27	70
Figura 8-25 Cambios de la temperatura mínima 2016-2065 relativo a 1981-2005 en Estación Chivay ·	-
cuenca Camana, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5) de	е
Gases de Efecto Invernadero, escala trimestral a) DEF, b) MAM, c) JJA y d) SON27	71
Figura 8-26 Cambios de la temperatura mínima 2016-2065 relativo a 1981-2005 en la Estación Chiva	ЭУ
– cuenca Camana, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5)	
de Gases de Efecto Invernadero, escalas: a) avenida, b) estiaje, c) anual y d) año hidrológico 27	72
Figura 8-27 Cambios de la temperatura mínima 2016-2065 relativo a 1981-2005 en Estación Sibayo	· —
cuenca Camana, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5) de	e
Gases de Efecto Invernadero, escala trimestral a) DEF, b) MAM, c) JJA y d) SON	73
Figura 8-28 Cambios de la temperatura mínima 2016-2065 relativo a 1981-2005 en la Estación Sibay	/0
– cuenca Camana, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5)	
de Gases de Efecto Invernadero, escalas: a) avenida, b) estiaje, c) anual y d) año hidrológico 27	74
Figura 8-29 Cambios de la temperatura máxima 2016-2065 relativo a 1981-2005 en Estación Carave	li
 Región Arequipa, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5) 	-
de Gases de Efecto Invernadero, escala trimestral a) DEF, b) MAM, c) JJA y d) SON27	76
Figura 8-30 Cambios de la temperatura máxima 2016-2065 relativo a 1981-2005 en la Estación	
Caraveli — Región Areguina, para los escenarios de altas emisiones (RCP8 5) y moderadas emisiones	

(RCP4.5) de Gases de Efecto Invernadero, escalas: a) avenida, b) estiaje, c) anual y d) ano hidrologico
Figura 8-31 Cambios de la temperatura máxima 2016-2065 relativo a 1981-2005 en Estación Imata — Región Arequipa, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5) de Gases de Efecto Invernadero, escala trimestral a) DEF, b) MAM, c) JJA y d) SON
emisiones (RCP4.5) de Gases de Efecto Invernadero, escala trimestral a) DEF, b) MAM, c) JJA y d) SON
Figura 8-34 Cambios de la temperatura máxima 2016-2065 relativo a 1981-2005 en la Estación La Angostura – Región Arequipa, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5) de Gases de Efecto Invernadero, escalas: a) avenida, b) estiaje, c) anual y d) año hidrológico
Figura 8-35 Cambios de la temperatura máxima 2016-2065 relativo a 1981-2005 en Estación Punta Atico – Región Arequipa, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5) de Gases de Efecto Invernadero, escala trimestral a) DEF, b) MAM, c) JJA y d) SON 282 Figura 8-36 Cambios de la temperatura máxima 2016-2065 relativo a 1981-2005 en la Estación Punta Atico – Región Arequipa, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5) de Gases de Efecto Invernadero, escalas: a) avenida, b) estiaje, c) anual y d) año hidrológico
Figura 8-37 Cambios de la temperatura máxima 2016-2065 relativo a 1981-2005 en Estación Cotahuasi – cuenca Ocoña, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5) de Gases de Efecto Invernadero, escala trimestral a) DEF, b) MAM, c) JJA y d) SON 284 Figura 8-38 Cambios de la temperatura máxima 2016-2065 relativo a 1981-2005 en la Estación Cotahuasi – cuenca Ocoña, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5) de Gases de Efecto Invernadero, escalas: a) avenida, b) estiaje, c) anual y d) año hidrológico
Figura 8-39 Cambios de la temperatura máxima 2016-2065 relativo a 1981-2005 en Estación Aplao — cuenca Camana, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5) de Gases de Efecto Invernadero, escala trimestral a) DEF, b) MAM, c) JJA y d) SON
de Gases de Efecto Invernadero, escalas: a) avenida, b) estiaje, c) anual y d) año hidrológico 289 Figura 8-43 Cambios de la temperatura máxima 2016-2065 relativo a 1981-2005 en Estación Sibayo – cuenca Camana, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5) de Gases de Efecto Invernadero, escala trimestral a) DEE, b) MAM, c) LIA y d) SON

Figura 8-44 Cambios de la temperatura maxima 2016-2065 relativo à 1981-2005 en la Estación Sibayo
– cuenca Camana, para los escenarios de altas emisiones (RCP8.5) y moderadas emisiones (RCP4.5)
de Gases de Efecto Invernadero, escalas: a) avenida, b) estiaje, c) anual y d) año hidrológico 291
Figura 8-45 Evolucion del SPI 3 meses de enero 1981 a diciembre 2065, en las subcuencas 1 al 7
comprendidas en la cuenca del rio Ocoña
Figura 8-46 Evolucion del SPI 3 meses de enero 1981 a diciembre 2065, en las subcuencas 8 al 14
comprendidas en la cuenca del rio Ocoña
Figura 8-47 Evolucion del SPI 3 meses de enero 1981 a diciembre 2065, en las subcuencas 1 al 7
comprendidas en la cuenca del rio Ocoña
Figura 8-48 Evolucion del SPI 12 meses de enero 1981 a diciembre 2065, en las subcuencas 1 al 7
comprendidas en la cuenca del rio Ocoña
Figura 8-49 Evolucion del SPI 12 meses de enero 1981 a diciembre 2065, en las subcuencas 8 al 14
comprendidas en la cuenca del rio Ocoña
Figura 8-50 Evolucion del SPI 12 meses de enero 1981 a diciembre 2065, en las subcuencas 15 al 20
comprendidas en la cuenca del rio Ocoña
Figura 8-51 Evolucion del SPI 3 meses de enero 1981 a diciembre 2065, en las subcuencas 1 al 7
comprendidas en la cuenca del rio Camana
Figura 8-52 Evolucion del SPI 3 meses de enero 1981 a diciembre 2065, en las subcuencas 8 al 14
comprendidas en la cuenca del rio Camana
Figura 8-53 Evolucion del SPI 3 meses de enero 1981 a diciembre 2065, en las subcuencas 15 al 21
comprendidas en la cuenca del rio Camana
Figura 8-54 Evolucion del SPI 3 meses de enero 1981 a diciembre 2065, en las subcuencas 22 al 27
comprendidas en la cuenca del rio Camana
Figura 8-55 Evolucion del SPI 12 meses de enero 1981 a diciembre 2065, en las subcuencas 1 al 7
comprendidas en la cuenca del rio Camana
Figura 8-56 Evolucion del SPI 12 meses de enero 1981 a diciembre 2065, en las subcuencas 8 al 14
comprendidas en la cuenca del rio Camana
Figura 8-57 Evolucion del SPI 12 meses de enero 1981 a diciembre 2065, en las subcuencas 19 al 21
comprendidas en la cuenca del rio Camana
Figura 8-58 Evolucion del SPI 12 meses de enero 1981 a diciembre 2065, en las subcuencas 22 al 27
comprendidas en la cuenca del rio Camana
Figura 8-59 Macro Clase y clases
Figura 8-60 Ejemplo de máxima probabilidad
Figura 8-61 Estructura de un RNA de 3 capas
Figura 8-62 Flujograma metodológico sobre escenarios de disponibilidad hídrica futura 317
Figura 8-63 Coberturas identificadas para el ámbito de estudio. Clasificación supervisada de la
imagen Landsat 7 del año 2002319
Figura 8-64. Variables explicativas consideradas para el presente estudio. Para las figuras c), d) y e)
los colores más oscuros representan distancias más cercanas hacia las variables consideradas 321
Figura 8-65. Uso de suelo simulado para el horizonte del año 2030
Figura 8-66. Serie de tiempo de caudales medios mensuales para las subcuencas del río Ocoña.
Periodo 2011-2065
Figura 8-67. Evolución temporal promedio diario para la cuenca de precipitación, evapotranspiración,
rendimiento hídrico, contribución de la escorrentía superficial y contribución de flujo base 326

Figura 8-68. Distribución espacial a nivel de HRUs de: a) rendimiento hídrico (WYLD en mm)	
(Izquierda), b) contribución de flujo base (derecha superior) y c) contribución de la escorrentía	
superficial (derecha inferior)	328
Figura 8-69 Representación de los caudales medios mensuales. En la parte superior, los caudales	0_0
medios para cada subcuenca. En la parte inferior, los caudales medios para toda la cuenca del río	
Ocoña. Período de evaluación 2011-2065	320
Figura 8-70. Resumen de los caudales medios multianuales 2011-2065 para cada subcuenca del río	
Ocoña	
Figura 8-71. Serie de tiempo de caudales medios mensuales para las subcuencas del río Camaná	221
Majes. Periodo 2011-2065	222
•	332
Figura 8-72. Evolución temporal promedio diario para la cuenca de precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	
flujo base	333
Figura 8-73. Distribución espacial a nivel de HRUs de: a) rendimiento hídrico (WYLD en mm)	
(Izquierda), b) contribución de flujo base (derecha superior) y c) contribución de la escorrentía	
superficial (derecha inferior)	
Figura 8-74. Representación de los caudales medios mensuales. Presentación de la subcuenca uno	
la dieciocho del modelo SWAT de Camaná Majes. Período de evaluación 2011-2065	336
Figura 8-75. Representación de los caudales medios mensuales. En la parte superior, Presentación	ı de
la subcuenca diecinueve a la veintisiete del modelo SWAT de Camaná Majes. En la parte inferior, l	os
caudales medios para toda la cuenca del río Camaná Majes. Período de evaluación 2011-2065	337
Figura 8-76. Caudales medios multianuales 2011-2065 para cada subcuenca del río Camaná Majes	3.
	339
Figura 8-77. Evolución temporal promedio diario para la Subcuenca 1 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	de
flujo base	346
Figura 8-78. Evolución temporal promedio diario para la Subcuenca 2 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	de
flujo base	347
Figura 8-79. Evolución temporal promedio diario para la Subcuenca 3 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	de
flujo base.	
Figura 8-80. Evolución temporal promedio diario para la Subcuenca 4 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	de
flujo base	
Figura 8-81. Evolución temporal promedio diario para la Subcuenca 5 para la precipitación,	3 .3
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	dь
flujo base	
Figura 8-82. Evolución temporal promedio diario para la Subcuenca 6 para la precipitación,	330
	do
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	
flujo base.	35I
Figura 8-83. Evolución temporal promedio diario para la Subcuenca 71 para la precipitación,	al
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	
flujo base	352

Figura 8-84. Evolución temporal promedio diario para la Subcuenca 8 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	
flujo base.	. 353
Figura 8-85. Evolución temporal promedio diario para la Subcuenca 9 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	
flujo base.	. 354
Figura 8-86. Evolución temporal promedio diario para la Subcuenca 10 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	ı de
flujo baseflujo base	. 355
Figura 8-87. Evolución temporal promedio diario para la Subcuenca 11 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	ı de
flujo baseflujo base	
Figura 8-88. Evolución temporal promedio diario para la Subcuenca 12 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	ı de
flujo base.	
Figura 8-89. Evolución temporal promedio diario para la Subcuenca 13 para la precipitación,	. 337
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	, do
flujo base.	. 338
Figura 8-90. Evolución temporal promedio diario para la Subcuenca 14 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	
flujo base	. 359
Figura 8-91. Evolución temporal promedio diario para la Subcuenca 15 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	
flujo baseflujo base	. 360
Figura 8-92. Evolución temporal promedio diario para la Subcuenca 16 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	ı de
flujo base	. 361
Figura 8-93. Evolución temporal promedio diario para la Subcuenca 17 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	ı de
flujo baseflujo base	. 362
Figura 8-94. Evolución temporal promedio diario para la Subcuenca 18 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	ı de
flujo base	
Figura 8-95. Evolución temporal promedio diario para la Subcuenca 19 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	de
flujo base.	
Figura 8-96. Evolución temporal promedio diario para la Subcuenca 20 para la precipitación,	. 304
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	
flujo base.	. 365
Figura 8-97. Evolución temporal promedio diario para la Subcuenca 1 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	
flujo base	. 366
Figura 8-98. Evolución temporal promedio diario para la Subcuenca 2 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución	ı de
fluio haco	367

Figura 8-99. Evolución temporal promedio diario para la Subcuenca 3 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de	
flujo base	68
Figura 8-100. Evolución temporal promedio diario para la Subcuenca 4 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de	
flujo base	69
Figura 8-101. Evolución temporal promedio diario para la Subcuenca 5 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de	
flujo base	70
Figura 8-102. Evolución temporal promedio diario para la Subcuenca 6 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de	e
flujo base3	71
Figura 8-103. Evolución temporal promedio diario para la Subcuenca 7 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de	e
flujo base	
Figura 8-104. Evolución temporal promedio diario para la Subcuenca 8 para la precipitación,	_
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de	^
flujo base	/3
Figura 8-105. Evolución temporal promedio diario para la Subcuenca 9 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de	
flujo base	74
Figura 8-106. Evolución temporal promedio diario para la Subcuenca 10 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de	e
flujo base3	75
Figura 8-107. Evolución temporal promedio diario para la Subcuenca 11 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de	e
flujo base	
Figura 8-108. Evolución temporal promedio diario para la Subcuenca 12 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de	6
flujo base	
Figura 8-109. Evolución temporal promedio diario para la Subcuenca 13 para la precipitación,	,,
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de	
flujo base	78
Figura 8-110. Evolución temporal promedio diario para la Subcuenca 14 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de	e
flujo base	79
Figura 8-111. Evolución temporal promedio diario para la Subcuenca 15 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de	e
flujo base	80
Figura 8-112. Evolución temporal promedio diario para la Subcuenca 16 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de	٩
flujo base	
Figura 8-113. Evolución temporal promedio diario para la Subcuenca 17 para la precipitación,	υI
	_
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de	e e
Tuno resea	× /

evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribució	
flujo base	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribució flujo base	
Figura 8-116. Evolución temporal promedio diario para la Subcuenca 20 para la precipitación, evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución.	
flujo base	385
Figura 8-117. Evolución temporal promedio diario para la Subcuenca 21 para la precipitación, evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribució flujo base	
Figura 8-118. Evolución temporal promedio diario para la Subcuenca 22 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribució flujo base.	
Figura 8-119. Evolución temporal promedio diario para la Subcuenca 23 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribució flujo base.	
Figura 8-120. Evolución temporal promedio diario para la Subcuenca 24 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribució flujo base.	
Figura 8-121. Evolución temporal promedio diario para la Subcuenca 25 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribució flujo base.	
Figura 8-122. Evolución temporal promedio diario para la Subcuenca 26 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribució flujo base.	
Figura 8-123. Evolución temporal promedio diario para la Subcuenca 27 para la precipitación,	
evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribució flujo base.	
Figura 8-124. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca	
Figura 8-125. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca	
Figura 8-126. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca	3.
Figura 8-127. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca	4.
Figura 8-128. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca	5.
Figura 8-129. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca	6.
Figura 8-130. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca	
Tigara o 150. Quinquemos comparados respecto a los caudales de 1501-2010 para la subcuenca	7. 396

Figura 8-131.	Quinquenios	-	-			-			
_	Quinquenios (comparados	respecto a		es de 1981	L-2010 pa	ra la su	bcuenca	9397
_		-				-			
_	Quinquenios	•	•						
Figura 8-135.	Quinquenios	comparados	respecto a	los caudale	es de 1981	L-2010 pa	ra la su	bcuenca	12.
Figura 8-136.	Quinquenios	comparados	respecto a	los caudale	es de 1981	L- 2 010 pa	ra la su	bcuenca	13.
Figura 8-137.	Quinquenios	comparados	respecto a	los caudale	es de 1981	L-2010 pa	ra la su	bcuenca	14.
Figura 8-138.	Quinquenios	comparados	respecto a	los caudale	es de 1981	L-2010 pa	ra la su	bcuenca	15.
Figura 8-139.	Quinquenios	comparados	respecto a	los caudale	es de 1981	L- 2010 pa	ra la su	bcuenca	16.
Figura 8-140.	Quinquenios	comparados	respecto a	los caudale	es de 1981	L- 2 010 pa	ra la su	bcuenca	17.
Figura 8-141.	Quinquenios	comparados	respecto a	los caudale	es de 1981	L- 2 010 pa	ra la su	bcuenca	18.
Figura 8-142.	Quinquenios	comparados	respecto a	los caudale	es de 1981	L- 2010 pa	ra la su	bcuenca	19.
Figura 8-143.	Quinquenios	comparados	respecto a	los caudale	es de 1981	L- 2 010 pa	ra la su	bcuenca	20.
	Quinquenios	comparados	respecto a		es de 1981	L-2010 pa	ra la su	bcuenca	1.
Figura 8-145.	Quinquenios		respecto a	los caudale	es de 1981	L-2010 pa	ra la su	bcuenca	2.
	Quinquenios	comparados	respecto a	los caudale	es de 1981	L- 2 010 pa	ra la su	bcuenca	3.
Figura 8-147.	Quinquenios	comparados	respecto a	los caudale	es de 1981	L- 2 010 pa	ra la su	bcuenca	4.
Figura 8-148.	Quinquenios	comparados	respecto a	los caudale	es de 1981	L- 2 010 pa	ra la su	bcuenca	5.
Figura 8-149.	Quinquenios	comparados	respecto a	los caudale	es de 1981	L-2010 pa	ra la su	bcuenca	6.
Figura 8-150.	Quinquenios	comparados	respecto a	los caudale	es de 1981	L-2010 pa	ra la su	bcuenca	7.
Figura 8-151.	Quinquenios	comparados	respecto a	los caudale	es de 1981	L- 2010 pa	ra la su	bcuenca	8.
Figura 8-152.	Quinquenios	comparados	respecto a	los caudale	es de 1981	L-2010 pa	ra la su	bcuenca	9.
Figura 8-153.	Quinquenios	comparados	respecto a	los caudale	es de 1981	L-2010 pa	ra la su	bcuenca	10.
									40/

Figura 8-154. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca 11.
Figura 8-155. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca 12.
Figura 8-156. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca 13.
Figura 8-157. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca 14.
Figura 8-158. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca 15.
Figura 8-159. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca 16.
Figura 8-160. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca 17.
Figura 8-161. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca 18.
Figura 8-162. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca 19.
Figura 8-163. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca 20.
Figura 8-164. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca 21.
Figura 8-165. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca 22.
Figura 8-166. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca 23.
Figura 8-167. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca 24.
Figura 8-168. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca 25.
Figura 8-169. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca 26.
Figura 8-170. Quinquenios comparados respecto a los caudales de 1981-2010 para la subcuenca 27.

LISTA DE TABLAS

Tabla 2-1 Tasa de crecimiento promedio anual	5
Tabla 2-2 Poblacion censada urbada y rural	5
Tabla 2-3 Población total por afiliación o algún tipo de seguro de salud, según sexo, 2007	6
Tabla 2-4 Campaña agrícola de la región Arequipa 2016-2017	7
Tabla 2-5 Zonas de vida, región Arequipa	9
Tabla 2-6 Zonas de vida en la cuenca Ocoña	. 11
Tabla 2-7 Zonas de vida en la cuenca Ocoña	. 14
Tabla 3-1 Red de estaciones meteorológicas	. 18
Tabla 3-2 red de estaciones hidrológicas	. 19
Tabla 3-3 Índices de extremos climáticos aplicables para el área de estudio	. 30
Tabla 4-1. Principales unidades hidrográficas delimitadas en la cuenca del río Ocoña	. 32
Tabla 4-2 Parametros morfometricos de la cuenca del rio Ocoña	. 36
Tabla 4-3. Principales unidades hidrográficas delimitadas en la cuenca del río Camana-Majes	. 37
Tabla 4-4 Parametros morfometricos de las subcuencas que conforman la cuenca del Camana	. 42
Tabla 5-1 Parámetros estadísticos de la precipitación de la cuenca Ocoña	. 45
Tabla 5-2 Climatología de la precipitación en unidades hidrográficas de la cuenca Ocoña	. 47
Tabla 5-3 Parámetros estadísticos de la precipitación de la cuenca Camaná-Majes	. 49
Tabla 5-4 Climatología de la precipitación en unidades hidrográficas de la cuenca Camaná-Majes	. 51
El rango térmico de variación mensual de la temperatura en la cuenca fluctúa entre 14.3 ºC y 23.8	ōC
correspondiente a los meses de febrero y julio, respectivamente, estas variaciones se ilustra en la	
Tabla 5-5 y Figura 5-9.Tabla 5-5 Climatología de la Temperatura máxima y mínima promedio en la	
cuenca Ocoña	. 53
Tabla 5-6 Climatología de la temperatura máxima mensual y anual promedio en unidades	
hidrográficas de la cuenca Ocoña	. 55
Tabla 5-7 Climatología de la temperatura mínima promedio mensual y anual en unidades	
hidrográficas de la cuenca Ocoña	. 56
Tabla 5-8 Climatología de la Temperatura máxima y mínima promedio en la cuenca Camaná-Majes	s 57
Tabla 5-9 Climatología de la temperatura máxima en unidades hidrográficas - cuenca Camaná Majo	es
	. 60
Tabla 5-10 Climatología de la Temperatura mínima en unidades hidrográficas - cuenca Camaná	
Majes	. 61
Tabla 5-11 Climatología de la Eto mensual y anual promedio en la cuenca Ocoña	. 63
Tabla 5-12 Climatología Eto en unidades hidrográficas - cuenca Ocoña	. 65
Tabla 5-13 Climatología de la Eto mensual y anual promedio en la cuenca Camaná-Majes	. 66
Tabla 5-14 Climatología de la Eto promedio mensual y anual en Unidades Hidrográficas de la cuenc	са
Camaná-Majes	
Tabla 6-1 Tendencia de precipitación histórica expresada en porcentaje (%) – Región Arequipa :	110
Tabla 6-2 Tendencia de precipitación histórica expresada en porcentaje (%)- Cuenca del rio Ocoña:	111
Tabla 6-3 Tendencia de precipitación histórica expresada en porcentaje (%)- Cuenca del rio Caman	ıa
	111
Tabla 6-4 Tendencia de la temperatura máxima histórica expresada en porcentaje (%)- Region	
Arequipa	112

Tabla 6-5 Tendencia de la temperatura máxima histórica expresada en porcentaje (%)- Cuenca del ric Ocoña
Tabla 6-6 Tendencia de la temperatura maxima histórica expresada en porcentaje (%)- Cuenca del ric
Camana
Tabla 6-7 Tendencia de la temperatura mínima histórica expresada en porcentaje (%)- Región Arequipa
Tabla 6-8 Tendencia de la temperatura mínima histórica expresada en porcentaje (%)- Cuenca del rio
Ocoña
Tabla 6-9 Tendencia de la temperatura mínima histórica expresada en porcentaje (%)- Cuenca del rio
Camana
Tabla 7-1 Estaciones virtuales para las variables de precipitación y temperatura Cuenca del río Ocoña
Tabla 7-2. Relación de estaciones virtuales para las variables de precipitación y temperatura. Cuenca
del rio Camaná Majes
Tabla 7-3. Estación hidrométrica utilizada para la calibración en de la cuenca del río Ocoña 119
Tabla 7-4. Estación hidrométrica utilizada para la calibración en de la cuenca del río Camana 120
Tabla 7-5. Adecuación de la base de datos GlobalLand30 a la base de datos SWAT
Tabla 7-6. Tipo de datos, resolución y fuente
Tabla 7-7. Características de la cuenca Ocoña reclasificado de acuerdo a la superposición y
combinación única de un tipo particular del uso de suelo, tipo de suelos y pendientes con cobertura
no menor al 5 % en cada sub-cuenca
Tabla 7-8. Características de la cuenca Camaná Majes reclasificado de acuerdo a la superposición y
combinación única de un tipo particular del uso de suelo, tipo de suelos y pendientes con cobertura
no menor al 5 % en cada sub-cuenca
Tabla 7-9. Esquema de clasificación del desempeño del modelo SWAT
Tabla 7-10. Valores mínimos y máximos de los parámetros más sensibles. La letra "v" antes de cada
parámetro indica que el valor será sustituido entre algún valor del rango establecido
Tabla 7-11. Resumen de estadísticos del periodo de calibración y validación a partir del SUFI2 134
Tabla 7-12. Balance de masa anual del rendimiento hídrico de la cuenca. Q_{surf} , Q_{lat} , Q_{gws} y Q_{gwd} son los
aportes de flujo superficial, lateral, del acuífero superficial y del acuífero profundo
Tabla 7-13. Promedio anual del balance hídrico (periodo 1981 – 2010) de la cuenca del río Ocoña 13
Tabla 7-14. Resumen de Precipitación (R), Evapotranspiración real (ET), Rendimiento hídrico (WYLD),
Contribución del flujo base (FB), Flujo superficial (Q _{sup}), Flujo lateral (Q _{lat}), Flujo del acuífero
superficial (Q_{gws}) y Flujo del acuífero profundo (Q_{gwd}) para cada subcuenca del modelo SWAT en la
cuenca del río Ocoña correspondientes a los promedios multianuales del periodo 1981-2010 140
Tabla 7-15. Parámetros considerados como constantes y no sujetos al análisis de incertidumbre.
Parámetros correspondientes a los embalses en la cuenca Camaná Majes
Tabla 7-16. Valores de Manning recomendados para canales abiertos (excavados y naturales) 14-
Tabla 7-10. Valores mínimos y máximos de los parámetros más sensibles. Valores de los parámetros
del modelo SWAT calibrado. En la columna que corresponde al código del parámetro "v" ("r") indica
que el parámetro fue: sustituido por un cierto valor del rango (multiplicado por 1 + cierto valor de
cambio relativo)
Tabla 7-18. Resumen de estadísticos del periodo de calibración y validación a partir del SUFI2 140
Tabla 7-18. Resument de estadísticos del período de calibración y validación a partir del Soriz 140. Tabla 7-19Balance de masa anual del rendimiento hídrico de la cuenca. Q_{surf} , Q_{lat} , Q_{gws} y Q_{gwd} son los
aportes de flujo superficial, lateral, del acuífero superficial y del acuífero profundo
aportes de majo supermolar, lateral, dei dedirero supermolar y dei dedirero profundo

i abia 7-20. Balance nidrico promedio anual (periodo 1981 – 2010) de la cuenca del rio Camana Maj 14	
Γabla 7-21 Precipitación (R), Evapotranspiración real (ET), Rendimiento hídrico (WYLD), Contribució del flujo base (FB), Flujo superficial (Q_{sup}), Flujo lateral (Q_{lat}), Flujo del acuífero superficial (Q_{gws}) y Flujo del acuífero profundo (Q_{gwd}) para cada subcuenca del modelo SWAT en la cuenca del río Camaná Majes. Los valores presentados corresponden a los promedios multianuales del periodo 1981-2010.	n
Tabla 7-22 Caudales promedios en año seco, normal y húmedo en la Sub 1 - Subcuenca Pacapausa	
Tabla 7-24 Caudales promedios en año seco, normal y húmedo en las Sub 3 -Subcuenca Pallancata	
Tabla 7-25 Caudales promedios en año seco, normal y húmedo en la Sub 4 - Subcuenca Pacchichaca 1	а
Tabla 7-26 Caudales promedios en año seco, normal y húmedo en la Sub 5 - Subcuenca Alto Cotahuasi	
Tabla 7-27 Caudales promedios en año seco, normal y húmedo en la Sub 6 - Subcuenca De Sumana	
Tabla 7-28 Caudales promedios en año seco, normal y húmedo en la Sub 7 - Subcuenca Pampamarc	ca
Tabla 7-29 Caudales promedios en año seco, normal y húmedo en la Sub 8 - Subcuenca Mirmaca. 10	61
Гabla 7-30 Caudales promedios en año seco, normal y húmedo en la Sub 9- Unidad HIdrografica 136911	61
Tabla 7-31 Caudales promedios en año seco, normal y húmedo en la Sub 10 - Subcuenca Oyolo 10	62
Tabla 7-32 Caudales promedios en año seco, normal y húmedo en la Sub 11 - Subcuenca Parinacochas	63
Tabla 7-33 Caudales promedios en año seco, normal y húmedo en la Sub 12 - Subcuenca Maran 10	
Tabla 7-34 Caudales promedios en año seco, normal y húmedo en la Sub 13-Intercuenca Cotahuasi 10	
Tabla 7-36 Caudales promedios en año seco, normal y húmedo en la Sub 15 - Subcuenca Churunga 10	65
Tabla 7-37 Caudales promedios en año seco, normal y húmedo en la Sub 16 - Subcuenca Chalhuane	
Tabla 7-38 Caudales promedios en año seco, normal y húmedo en la Sub 17 - Subcuenca Esbilla 10	
Гabla 7-39 Caudales promedios en año seco, normal y húmedo en la Sub 18 - Subcuenca Bajo Churunga1	67
Tabla 7-40 Caudales promedios en año seco, normal y húmedo en la Sub 19 - Intercuenca Medio Ba Ocoña 10	-
Tabla 7-41 Caudales promedios en año seco, normal y húmedo en la subcuenca Bajo Ocoña 10	
Tabla 7-42 Caudales promedios en año seco, normal y húmedo en la Sub 1 - Intercuenca Bajo	
Camana1	
Tabla 7-43 Caudales promedios en año seco, normal y húmedo en la Sub 2 - Subcuenca Molles 1	
Tabla 7-44 Caudales promedios en año seco, normal y húmedo en la Sub 3 - Subcuenca Puluvinas 1	
Tabla 7-45 Caudales promedios en año seco, pormal y húmedo en la Subcuenca 4	17

Tabla 7-46 Caudales promedios en año seco, normal y húmedo en la Subcuenca 5	173
Tabla 7-47 Caudales promedios en año seco, normal y húmedo en la Subcuenca 6	174
Tabla 7-48 Caudales promedios en año seco, normal y húmedo en la Sub 7 - Subcuenca Ayo	174
Tabla 7-49 Caudales promedios en año seco, normal y húmedo en la Subcuenca 8	175
Tabla 7-50 Caudales promedios en año seco, normal y húmedo en la Subcuenca 9	176
Tabla 7-51 Caudales promedios en año seco, normal y húmedo en la Sub 10 - Subcuenca Capiza	176
Tabla 7-52 Caudales promedios en año seco, normal y húmedo en la Sub 11 - Intercuenca Colca	
Camana	177
Tabla 7-53 Caudales promedios en año seco, normal y húmedo en la Subcuenca 12	178
Tabla 7-54 Caudales promedios en año seco, normal y húmedo en la Sub13- Subcuenca Llapa	178
Tabla 7-55 Caudales promedios en año seco, normal y húmedo en la Subcuenca 14	179
Tabla 7-56 Caudales promedios en año seco, normal y húmedo en la Sub15 - Subcuenca Medio Co	lca
	180
Tabla 7-57 Caudales promedios en año seco, normal y húmedo en la Subcuenca 16	180
Tabla 7-58 Caudales promedios en año seco, normal y húmedo en la Subc 17 - Subcuenca Negrillo)
	181
Tabla 7-59 Caudales promedios en año seco, normal y húmedo en la Subcuenca 18	182
Tabla 7-60 Caudales promedios en año seco, normal y húmedo en la Sub 19 - Intercuenca Medio A	۱to
Colca	182
Tabla 7-61 Caudales promedios en año seco, normal y húmedo en la Sub20 - Subcuenca El Pañe	
Negrillo	183
Tabla 7-62 Caudales promedios en año seco, normal y húmedo en la Sub21 - Subcuenca Condoron	na
	184
Tabla 7-63 Caudales promedios en año seco, normal y húmedo en la Subcuenca 22	184
Tabla 7-64 Caudales promedios en año seco, normal y húmedo en la Sub23 - Subcuenca Maquerul	
	185
Tabla 7-65 Caudales promedios en año seco, normal y húmedo en la Sub 24 - Subcuenca Chalhuan	ıca
	186
Tabla 7-66 Caudales promedios en año seco, normal y húmedo en la Sub 25- Subcuenca Molloco	
Tabla 7-67 Caudales promedios en año seco, normal y húmedo en la Sub 26 - Subcuenca Andahua	3
	187
Tabla 7-68 Caudales promedios en año seco, normal y húmedo en la Sub 27 - Subcuenca 27	188
Tabla 7-69. Resumen de los caudales medios mensuales (período 1981-2010) para cada subcuenca	a
considerada en el modelo SWAT de la cuenca del Río Ocoña.	192
Tabla 7-70. Resumen de los caudales medios mensuales (período 1981-2010) para cada subcuenca	a
considerada en el modelo SWAT de la cuenca del Río Camaná Majes	193
Tabla 8-1. Cambios en la cobertura de suelo 1988-2002	320
Tabla 8-2. Tabulacion cruzada entre el uso de suelo para los años 1988-2002	
Tabla 8-3. Resumen de cambios observados 2002-2016	
Tabla 8-4. Tabulacion cruzada entre el uso de suelo para los años 2002-2016	320
Tabla 8-5. Resumen de los cambios observados 2016-2030	322
Tabla 8-6. Características de la cuenca Ocoña reclasificado de acuerdo a la superposición y	
combinación única de un tipo particular del uso de suelo, tipo de suelos y pendientes con cobertu	ra
no menor al 5 % en cada sub-cuenca. En base al uso de suelo simulado para el horizonte del año	
2030	323

Tabla 8-7. Características de la cuenca Camana Majes reclasificado de acuerdo a la superposición y	
combinación única de un tipo particular del uso de suelo, tipo de suelos y pendientes con cobertura	
no menor al 5 % en cada sub-cuenca. En base al uso de suelo simulado para el horizonte del año	
2030	4
Tabla 8-8. Promeido anual del balance hídrico (presente 1981-2010 y futuro 2011-2065) en la cuenca	3
del rio Ocoña	7
Tabla 8-9. Resumen de la Precipitación (R), Evapotranspiración real (ET), Rendimiento hídrico (WYLD	
Contribución del flujo base (FB), Flujo superficial (Q _{sup}), Flujo lateral (Q _{lat}), Flujo del acuífero	-
superficial (Q _{gws}) y Flujo del acuífero profundo (Q _{gwd}) para cada subcuenca del modelo SWAT en la	
cuenca del río Ocoña. Los valores presentados corresponden a los promedios multianuales del	
periodo 2011-2065	0
Tabla 8-10. Promedio anual del balance hídrico (presente 1981-2010 y futuro 2011-2065) de la	
cuenca del río Camaná Majes	4
Tabla 8-11. Resumen de la Precipitación (R), Evapotranspiración real (ET), Rendimiento hídrico	
(WYLD), Contribución del flujo base (FB), Flujo superficial (Q _{sup}), Flujo lateral (Q _{lat}), Flujo del acuífero	
superficial (Q _{gws}) y Flujo del acuífero profundo (Q _{gwd}) para cada subcuenca del modelo SWAT en la	
cuenca del río Camaná Majes. Corresponden a los promedios multianuales del periodo 2011-2065.	
33	8
Tabla 8-12. Resumen de los caudales medios mensuales (período 2011-2065) para cada subcuenca	
considerada en el modelo SWAT de la cuenca del Río Ocoña	4
Tabla 8-13. Resumen de los caudales medios mensuales (período 2011-2065) para cada subcuenca	
considerada en el modelo SWAT de la cuenca del Río Camaná Majes	5
	_

No se encuentran elementos de tabla de ilustraciones.

CAPÍTULO I Introducción, Objetivos y alcances

1. Introducción

El SENAMHI en el marco del Convenio suscrito con Libélula, tiene a su cargo la elaboración del estudio "Escenarios Climáticos y caracterización de la Oferta hídrica presente y futura en las cuencas de los ríos Ocoña y Camaná-Majes de la región Arequipa"; en ese sentido en cumplimiento con los compromisos institucionales asumidos, se presenta el Volumen I que integra resultados de la caracterización del clima y de la disponibilidad hídrica presente y futura en las cuencas de los ríos Ocoña y Camaná-Majes.

En este Estudio (Volumen I), se sintetiza el análisis de las variables climáticas de precipitación, temperatura y evapotranspiración de referencia, a nivel de la región política del departamento de Arequipa y también a nivel de las cuencas Ocoña y Camana-Majes. El período de referencia utilizado para el análisis climatológico fue 1981-2010, obteniendo la climatología mensual, trimestral y anual de cada variable climática a nivel departamental y de cuenca. Se aplicaron técnicas de interpolación espacial robusta para el mapeo de las variables climáticas, teniendo como soporte la base de datos PISCO (Peruvian Interpolation data of the SENAMHI's Climatological and hydrological Observations, siglas en Inglés para su difusión internacional de precipitación.

El componente hidrológico del estudio incluye la determinación de la oferta hídrica para el conjunto de 47 unidades hidrográficas delimitadas en las cuencas de los ríos Ocoña (20) y Camaná-Majes (27). El modelo hidrológico utilizado para la generación de los caudales fue el modelo SWAT de enfoque espacial semidistribuido, siendo calibrado en los puntos de control de las estaciones hidrométricas de Puente Ocoña y Puente Huatiapa. La generación de los caudales medios mensuales a nivel de cada unidad hidrográfica cubre un extenso período desde 1981 hasta el 2016. Así mismo se ha caracterizado el balance hídrico del sistema hidrológico de cada unidad hidrográfica delimitada.

El modelo así calibrado estará en la capacidad de generar la oferta hídrica para los escenarios de climáticos futuros que será materia del siguiente informe.

En el Volumen II se muestra los mapas temáticos, parámetros morfometricos y climáticos elaborados a nivel de la región de Arequipa y cuenca del río Ocoña y Camaná-Majes, para el periodo presente y futuro.

1.1 Objetivo

1.1.1 Objetivo General

 Determinar la caracterización del clima presente y futuro en la región de Arequipa, así como los escenarios de la disponibilidad de agua en las cuencas de los ríos Ocoña y Camaná-Majes basados en proyecciones del clima futuro.

1.1.2 Objetivos específicos

- Describir y caracterizar la variable precipitación a nivel mensual, trimestral y anual en la región Arequipa.
- Describir y caracterizar las variables precipitación, temperatura y evapotranspiración de referencia mensual y anual, a escala de unidades hidrográficas de las cuencas Ocoña y Camaná-Majes.
- Generar caudales mensual y anual a escala de unidades hidrográficas delimitadas en las cuencas de los ríos Ocoña y Camaná-Majes.

1.2 Alcance

1.2.1 Alcance Temporal

• En Informe Tecnico- Volumen I, corresponde a la caracterización climática presente basado en una climatología de 30 años del periodo 1981-2010. Los datos climáticos e hidrológicos son analizados a escala de tiempo mensual y anual, para la caracterización climática futura corresponde al periodo 2011-2065, el Volumen II muestra la caracterización climática espacial presente para el periodo 1981-2010 y los cambios futuros en la precipitación y temperatura del aire son referidos al periodo 2036-2065 con referencia al periodo base 1981-2005.

•

1.2.2 Alcance espacial

• Como región política. El estudio de caracterización climática tiene cobertura espacial sobre todo el departamento de Arequipa.

•

• Como Unidades hidrograficas. El estudio tiene alcance espacial en las cuencas de los ríos Ocoña y Camaná-Majes pertenecientes a la región hidrográfica del Pacífico.

CAPÍTULO II Descripción general de la zona de estudio

2. Aspectos generales de las cuencas en estudio

2.1 Region Arequipa

2.1.1 Ubicación geográfica

La región Arequipa tiene una extensión superficial de 63345,39 Km2. Su densidad poblacional es de 18.2 hab/km2. Cuenta con ocho provincias y ciento nueve distritos. Limita por el norte con los departamentos de Ica, Ayacucho, Apurimac y Cusco; por el este limita con el departamento de Puno y Moquegua, por el oeste y sur limita con el Océano Pacífico.

2.1.2 Demografia

La población total en Arequipa para el año 2007 era de 1 152 303 habitantes; Respecto al censo inmediatamente anterior, efectuado en 1993, en términos absolutos la población aumentó en 235 497 habitantes, lo cual representa un crecimiento promedio anual de 1.6%. Ver Tabla 2-1.

Tabla 2-1 Tasa de crecimiento promedio anual

Crecimiento de la Población Total						
Area	1993	2007	2025	2050	Crecimiento	
Nacional	22048356	27412157	34412393	42811228	0.9	
Arequipa	916806	1180683	1427001		1.0	

Fuente: INEI. Censos Nacionales 2007 - ENEI Perú: Estimaciones y Proyecciones de Población 1950 – 2050

Al observar las principales características de la estructura poblacional en Arequipa para el año 2007, se encuentra que por sexo existe un porcentaje superior de mujeres que hombres (las mujeres constituyen el 50.8% del total de la población mientras los hombres componen el 49.2% restante); en términos etáreos se trata de una población joven (el 54% del total tiene menos de 30 años); y la mayor parte de la población vive en centros urbanos (el 91% corresponde a población urbana y el 9% restante a población rural).

Tabla 2-2 Poblacion censada urbada y rural

Area	ea 1993		200)7	2025		
	Urbano	Rural	Urbano	Rural	Urbano	Rural	
Nacional	15458599	6589757	20810288	6601869	26119006	8293387	
Arequipa	785858	130948	1044392	107911	1083094	343907	

Fuente: INEI Censos Nacionales 2007. Estimaciones y Proyecciones de Población 2025

2.1.3 Indicadores sociales

En Arequipa el porcentaje de población con acceso a agua potable es del 84%, cifra inferior en apenas dos puntos porcentuales de la correspondiente a Lima y superior en quince puntos al promedio nacional. Por área de residencia, en Arequipa existe una amplia diferencia en el acceso a agua potable. En efecto, mientras en el área urbana el 89.4% lo tiene (920 677 personas), en el área rural el porcentaje es de apenas el 23.6% (23 905 personas).

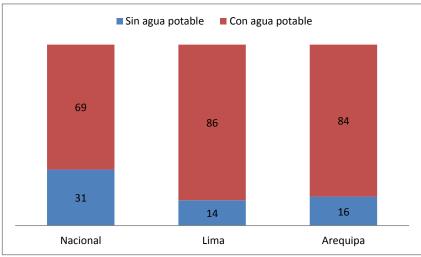


Figura 2-1 Poblacion con acceso a agua potable, 2007

Fuente: INEI Censos Nacionales 2007

En cuanto al acceso a servicios de salud, el 57% de la población en Arequipa no cuenta con esa posibilidad (658 469 personas). El 43% restante que accede al servicio, está afiliada principalmente a ESSALUD4 (56% del total), en menor proporción al Seguro Integral de Salud5 (31% del total) y en mínima proporción a otro tipo de seguro (12% del total). Por sexo no existen diferencias significativas.

Tabla 2-3 Población total por afiliación o algún tipo de seguro de salud, según sexo, 2007

Sexo	Total	SIS	Essalud	Otro	Ninguno
Total	1152303	152363	277629	70598	658469
Hombres	567339	71870	133929	39314	326196
Mujeres	584964	80493	143700	31284	332273

Fuente: INEI Censos Nacionales 2007

2.1.4 Produccion agricola

La actividad agrícola en la región Arequipa esta comprendida por lo siguientes: alfalfa, arroz, maíz chala, cebolla, papa, frijol grano seco, tuna – cochinilla, ajo, olivo, quinua, trigo y maíz amiláceo. Las zonas altitudinales agrícolas en la región Arequipa se han clasificado como:

- Zona costera, de 15 m.s.n.m. hasta los 1,000 m.s.n.m., corresponde a los valles costeños con irrigación; los cultivos preferentes son: arroz, trigo, menestras, olivo, algodón y caña de azúcar. El clima es variado, cálido con temperaturas entre 12 y 29 grados, con lloviznas menudas que fluctúan de 0 a 50 mm, el viento dominante es el alisio.
- Zona alto costera, comprendida entre los 1,000 a 2,000 m.s.n.m., corresponde a pequeños y
 medianos valles irrigados, con desarrollo agrícola y ganadero intensivo. Con posibilidades de
 desarrollo agro-industrial. En zona los cultivos preferentes son: alfalfa, hortalizas, cebolla,
 maíz, páprika, papa, maíz amiláceo, maíz forrajero y kiwicha. Esta zona destaca también por
 su producción de leche.

- Zona baja serrana, comprendida entre los 2,000 a 3,200 m.s.n.m., corresponde a la campiña arequipeña formada por el Río Chili y otros valles interandinos. En esta zona el clima es seco y muy soleado durante todo el año, con pequeñas excepciones. Los cultivos preferentes son: alfalfa, ajo, cebolla, arveja, zapallo, zanahoria, maíz, papa y cebada. En esta zona predomina la crianza de ganado lechero.
- Zona serrana, comprendida entre los 3,200 a 3,800 m.s.n.m., corresponde a las zonas altas de clima frío y lluvioso que van de 100 a 700 mm al año entre los meses octubre a marzo y con heladas en invierno. Temperatura promedio de 12 grados. Los cultivos principales son: papa, cebada, maíz, habas y alfalfa. Esta zona registra bajos niveles de productividad por no hacer uso de tecnologías modernas.
- Zona alto andina y puna, comprendida entre los 3,200 m.s.n.m. a más, corresponde a las zonas fría y de fuertes heladas en invierno, donde se cría los camélidos, especialmente la alpaca y ganado ovino y vacuno en poca escala. Los cultivos principales son la maca, quinua, cañihua y algunas variedades de papa.

La superficie total de Arequipa es de 6'334,539 has., de estas solo el 32.2% que corresponde a 2'041,092.50 has., es aprovechable con fines económicos, de ellas 5.75% (117,362.8 has) constituyen superficie agrícola, el 81.11% constituyen pastos naturales y el 13.14% corresponde a montes, bosques y otros. En las zonas altas se da un proceso de desertificación por deforestación y mal uso de los recursos hídricos.

En la actividad agrícola los cultivos de mayor importancia son: alfalfa, arroz, maíz chala, cebolla, papa, frijol grano seco, tuna – cochinilla, ajo, olivo, quinua, trigo, maíz amiláceo. Los rendimientos obtenidos son bajos por efecto de la siembra inoportuna, inadecuada reincorporación de los nutrientes al suelo y la insuficiente o casi nula disponibilidad de agua para riego, con precios en pie de chacra muy bajos, también afectados por el factor climatico y eventos extremos de origen hidrometeorologico.

Tabla 2-4 Campaña agrícola de la región Arequipa 2016-2017

Producto	Cosechas (Ha)	Rendimiento (kg/Ha)	Produccion TM
Acelga	49.00	15,511.02	760.04
Kiwicha	94.00	3,363.83	316.20
Aguaymanto			18.91
Aji	537.00	5,182.35	2,782.92
Ajo	591.00	18,119.02	10,708.34
Albahaca			435.40
Alcachofa			24,616.00
Alfalfa			1,334,403.41
Algodon			97.00
Algodon Hibrido Hazera			1,073.00
Apio	116	21,234.91	2,463.25
Arandano			1.45
Arroz Cascara	20,225.00	13,913.15	281,393.41
Arveja Grano Seco	5.00	1,480.00	7.40
Arveja Grano Verde	740.00	8,443.43	6,248.14
Avena Forrajera	200.00	15,960.55	3,192.11
Betarraga	75.00	17,512.80	1,313.46
Brocoli	68.00	16,455.44	1,118.97
Calabaza	12.00	40,716.67	488.60
Camote	34.00	11,346.29	385.77
Caña De Azucar (Para Alcohol)			1,881.53
Caña De Azucar (Para Azucar)			8,920.00
Caña De Azucar (Para Fruta)			231.00
Cañahua O Canihua	5.00	1,150.00	5.75

Producto	Cosechas (Ha)	Rendimiento (kg/Ha)	Produccion TM
Cebada Forrajera	269.00	14,972.27	4,027.54
Cebada Grano	177.00	3,184.79	563.71
Cebolla	3,689.00	40,785.60	150,458.08
Cebolla Cabeza Amarilla	244.00	61,751.64	15,067.40
Cebolla China	13.00	32,757.69	425.85
Chirimoyo			17.58
Cirolero			30.00
Col O Repollo	87.00	16,707.10	1,453.52
Coliflor	74.00	16,997.30	1,257.80
Dactilys			11.00
Damasco			13.70
Espinaca			356.50
Franklesa (Saminarm)			2.20
Fresas Y Frutillas (Semiperm.)	200.00	2 246 20	207.72
Frijol Grano Seco Frijol Vainita	149.00	3,346.30	669.26
Granado	149.00	12,440.87	1,853.69 2,206.67
Guayabo			48.87
Haba Grano Seco	219.00	2,053.47	449.71
Haba Grano Verde	775.00	6,809.39	5,277.27
Higuera	773.00	0,009.33	547.55
Lechuga	76.00	16,409.47	1,247.12
Limon Sutil	70.00	10,403.47	27.41
Lucuma (Producto)			438.36
Maiz Amarillo Duro	38.00	6,858.13	260.61
Maiz Amilaceo	1,996.00	2,913.73	5,815.80
Maiz Chala	7,563.00	56,128.97	424,503.43
Maiz Choclo	103.00	16,034.47	1,651.55
Maiz Morado	164.00	4,051.52	664.45
Mandarin0		,	2,500.00
Mango			151.74
Manzano			992.60
Mashua O Izano	7.00	5,000.00	35.00
Melocotonero			650.70
Melon	34.00	29,323.53	997.00
Membrillo			103.90
Nabo	66.00	15,368.79	1,014.34
Naranjo			99.82
Oca	26.00	5,223.46	135.81
Olivo			2,659.42
Olluco	42.00	5,613.10	235.75
Oregano			2,635.79
Pacae O Guabo			91.12
Pallar Grano Seco	130.00	2,159.23	280.70
Palto			10,209.42
Papa	2,650.00	33,254.62	88,124.73
Papaya			28.10
Paprika	456.00	6,566.61	2,994.38
Pepinillo (Cucumis Sativus)	23.00	13,256.09	304.89
Peral			227.98
Perejil (Especial)	74.00	20.070.60	637.00
Poro	74.00	20,070.68	1,485.23
Quinua	587.00	3,051.70	1,791.35
Rabano	36.00	15,695.83	565.05
Rye Grass	76.00	E4.455.36	768.98
Sandia Sorga Grano	76.00	54,155.26	4,115.80
Sorgo Grano	19.00	3,720.32	70.69
Tara	200 00	40 460 40	108.00
Tomate	388.00	49,469.48	19,194.16 55.21
Trigo Tuna	22.00	2,509.55	55.21 6.054.20
Tuna (Para Cochinilla)			6,954.20 1,199.22
Vid			
Yuca	6.00	13 0/0 93	12,742.45 78.30
Zanahoria	740.00	13,049.83 42,112.91	31,163.55
∠unanona	740.00		31,103.33
Zapallo	556.00	45,399.93	25,242.36

Fuente: MINAG - DIA - Agencias y Sedes Agrarias - CONACS, SENASA

2.1.5 Zonas de vida

En la región Arequipa, predomina el tipo desierto descado montano bajo subtropical y el paramo humedo subalpino subtropical abarcan el 21.7 % (hacia la zona baja) y 12.9% (hacia la zona media) del área total respectivamente. El área nival subtropical que aporta al escurrimiento superficial abarca 2.9% del área total de la región Arequipa.

Tabla 2-5 Zonas de vida, región Arequipa

Bosque pluvial Montano Subtropical Bosque humedo Montano Subtropical Bosque humedo Montano Subtropical Bosque muy humedo Montano Subtropical Bosque muy humedo Montano Subtropical Bosque muy humedo Montano Subtropical Bosierto arido Montano Subtropical Desierto desecado Montano Bajo Subtropical Bosierto desecado Subtropical Desierto desecado Subtropical Bosierto desecado Templado calido Bosierto perarido Montano Bajo Subtropical Desierto perarido Montano Bajo Subtropical Desierto perarido Montano Subtropical Desierto perarido Subtropical Desierto perarido Subtropical Desierto perarido Subtropical Desierto semiarido Subalpino Subtropical Desierto superarido Montano Bajo Subtrop Desierto superarido Montano Bajo Subtrop Desierto superarido Montano Bajo Subtrop Desierto superarido Subtropical	Descripción	Area Km2	Porcentaje (%)
Bosque muy humedo Montano Subtropical 1769.5 2.8 Desierto arido Montano Subtropical 1769.5 2.8 Desierto desecado Montano Bajo Subtropical 1838.2 2.9 Desierto desecado Subtropical 13750.9 21.7 Desierto desecado Templado calido 581.8 0.9 Desierto perarido Montano Bajo Subtropical 2730.5 4.3 Desierto perarido Montano Subtropical 109.9 0.2 Desierto perarido Subtropical 268.4 0.4 Desierto perarido Subtropical 3390.7 5.4 Desierto semiarido Subalpino Subtropical 511.0 0.8 Desierto semiarido Subalpino Subtropical 511.0 0.8 Desierto superarido Montano Bajo Subtrop 2308.6 3.6 Desierto superarido Subtropical 1233.2 1.9 Desierto superarido Templado calido 1171.6 1.8 Estepa espinosa Montano Bajo Subtropical 307.4 0.5 Estepa Montano Subtropical 794.0 1.3 Matorral desertico Montano Bajo Subtropi 1354.2 2.1 Matorral desertico Montano Subtropical 3768.7 6.0 Matorral desertico Subalpino Subtropical 3481.6 5.5 Matorral desertico Subalpino Subtropical 3481.6 5.5 Matorral desertico Subalpino Subtropical 3481.6 5.5 Matorral desertico Subtropical 3481.6 5.5 Matorral desertico Subtropical 3481.6 5.5 Paramo humedo Subalpino Subtropical 38156.4 12.9 Paramo humedo Subalpino Subtropical 3156.4 12.9 Paramo pluvial Subalpino Subtropical 732.0 1.2 Tundra humeda Alpino Subtropical 3116.9 4.9 Tundra pluvial Alpino Subtropical 3116.9 4.9	Bosque pluvial Montano Subtropical	75.0	0.1
Desierto arido Montano Subtropical Desierto desecado Montano Bajo Subtropical Desierto desecado Subtropical Desierto desecado Subtropical Desierto desecado Subtropical Desierto desecado Templado calido Desierto perarido Montano Bajo Subtropical Desierto perarido Montano Subtropical Desierto perarido Montano Subtropical Desierto perarido Subtropical Desierto perarido Templado calido Desierto semiarido Subalpino Subtropical Desierto superarido Montano Bajo Subtrop Desierto superarido Montano Bajo Subtrop Desierto superarido Montano Bajo Subtrop Desierto superarido Subtropical Desierto superarido Templado calido Desierto subtropical Desierto superarido Subtro	Bosque humedo Montano Subtropical	184.6	0.3
Desierto desecado Montano Bajo Subtropical 13750.9 21.7 Desierto desecado Subtropical 13750.9 21.7 Desierto desecado Templado calido 581.8 0.9 Desierto perarido Montano Bajo Subtropical 2730.5 4.3 Desierto perarido Montano Subtropical 109.9 0.2 Desierto perarido Subtropical 268.4 0.4 Desierto perarido Templado calido 3390.7 5.4 Desierto semiarido Subalpino Subtropical 511.0 0.8 Desierto superarido Montano Bajo Subtrop 2308.6 3.6 Desierto superarido Subtropical 1233.2 1.9 Desierto superarido Templado calido 1171.6 1.8 Estepa espinosa Montano Bajo Subtropical 307.4 0.5 Estepa Montano Subtropical 794.0 1.3 Matorral desertico Montano Bajo Subtropi 1354.2 2.1 Matorral desertico Montano Subtropical 3768.7 6.0 Matorral desertico Subalpino Subtropical 3481.6 5.5 Matorral desertico Subtropical 255.9 0.4 Matorral desertico Subtropical 255.9 0.4 Matorral desertico Templado calido 2692.2 4.3 Nival Subtropical 1822.8 2.9 Paramo humedo Subalpino Subtropical 8156.4 12.9 Paramo humedo Subalpino Subtropical 732.0 1.2 Tundra humeda Alpino Subtropical 3716.9 4.9 Tundra pluvial Alpino Subtropical 3716.9 4.9 Tundra pluvial Alpino Subtropical 3716.9 4.9 Tundra pluvial Alpino Subtropical 375.0 3.1	Bosque muy humedo Montano Subtropical	35.7	0.1
Desierto desecado Subtropical Desierto desecado Templado calido Desierto perarido Montano Bajo Subtropical Desierto perarido Montano Subtropical Desierto perarido Montano Subtropical Desierto perarido Subtropical Desierto perarido Subtropical Desierto perarido Templado calido Desierto semiarido Subalpino Subtropical Desierto superarido Montano Bajo Subtrop Desierto superarido Montano Bajo Subtrop Desierto superarido Subtropical Desierto superarido Subtropical Desierto superarido Subtropical Desierto superarido Templado calido Estepa Montano Subtropical Matorral desertico Montano Bajo Subtropi Desierto superarido Templado calido Matorral desertico Montano Bajo Subtropi Desierto subtropical Matorral desertico Subalpino Subtropical Matorral desertico Subalpino Subtropical Matorral desertico Subtropical Desierto subtropical Matorral desertico Subtropical Matorral desertico Subtropical Desierto subtropical Desierto superarido Templado calido Desierto superarido Subtropical Desierto superarido Subtropi	Desierto arido Montano Subtropical	1769.5	2.8
Desierto desecado Templado calido Desierto perarido Montano Bajo Subtropical Desierto perarido Montano Subtropical Desierto perarido Montano Subtropical Desierto perarido Subtropical Desierto perarido Subtropical Desierto perarido Templado calido Desierto semiarido Subalpino Subtropical Desierto semiarido Subalpino Subtropical Desierto superarido Montano Bajo Subtrop Desierto superarido Subtropical Desierto superarido Subtropical Desierto superarido Subtropical Desierto superarido Subtropical Desierto superarido Templado calido Desierto Subtropical Desierto Subtro	Desierto desecado Montano Bajo Subtropical	1838.2	2.9
Desierto perarido Montano Bajo Subtropical Desierto perarido Montano Subtropical Desierto perarido Subtropical Desierto perarido Subtropical Desierto perarido Templado calido Desierto semiarido Subalpino Subtropical Desierto superarido Montano Bajo Subtrop Desierto superarido Montano Bajo Subtrop Desierto superarido Subtropical Desierto superarido Templado calido Desierto superarido Templado calido Desierto superarido Templado calido Desierto superarido Templado calido Estepa espinosa Montano Bajo Subtropical Sestepa Montano Subtropical Matorral desertico Montano Bajo Subtropi Matorral desertico Montano Bajo Subtropi Matorral desertico Montano Subtropical Matorral desertico Subalpino Subtropical Matorral desertico Subtropical Matorral desertico Templado calido Nival Subtropical Paramo humedo Subalpino Subtropical Paramo humedo Subalpino Subtropical Paramo pluvial Subalpino Subtropical Tundra humeda Alpino Subtropical Tundra pluvial Alpino Subtropical Tundra pluvial Alpino Subtropical Tundra pluvial Alpino Subtropical Tundra pluvial Alpino Subtropical 1975.0 3.1	Desierto desecado Subtropical	13750.9	21.7
Desierto perarido Montano Subtropical Desierto perarido Subtropical Desierto perarido Subtropical Desierto perarido Templado calido Desierto semiarido Subalpino Subtropical Desierto superarido Montano Bajo Subtrop Desierto superarido Subtropical Desierto superarido Subtropical Desierto superarido Templado calido Estepa espinosa Montano Bajo Subtropical Desierto superarido Templado calido Desierto Subtropical Matorral desertico Montano Bajo Subtropical Matorral desertico Montano Bajo Subtropical Matorral desertico Subalpino Subtropical Desierto superarido Montano Bajo Subtropical Desierto superarido Templado calido Desier	Desierto desecado Templado calido	581.8	0.9
Desierto perarido Subtropical Desierto perarido Templado calido Desierto semiarido Subalpino Subtropical Desierto superarido Montano Bajo Subtrop Desierto superarido Montano Bajo Subtrop Desierto superarido Subtropical Desierto superarido Templado calido Desierto superarido Templado calido Desierto superarido Templado calido Desierto superarido Templado calido Estepa espinosa Montano Bajo Subtropical Desierto superarido Templado calido I171.6 I.8 Estepa espinosa Montano Bajo Subtropical Matorral desertico Montano Bajo Subtropi I354.2 IMatorral desertico Montano Subtropical Matorral desertico Subalpino Subtropical Matorral desertico Subalpino Subtropical Matorral desertico Subtropical Matorral desertico Templado calido Matorral desertico Templado calido Nival Subtropical Paramo humedo Subalpino Subtropical Paramo humedo Subalpino Subtropical Paramo muy humedo Subalpino Subtropical Paramo pluvial Subalpino Subtropical Tundra humeda Alpino Subtropical Tundra muy humeda Alpino Subtropical Tundra pluvial Alpino Subtropical	Desierto perarido Montano Bajo Subtropical	2730.5	4.3
Desierto perarido Templado calido Desierto semiarido Subalpino Subtropical Desierto superarido Montano Bajo Subtrop 2308.6 Desierto superarido Subtropical Desierto superarido Subtropical Desierto superarido Templado calido Desierto superarido Templado calido Estepa espinosa Montano Bajo Subtropical Estepa Montano Subtropical Matorral desertico Montano Bajo Subtropi Matorral desertico Montano Bajo Subtropi Matorral desertico Subalpino Subtropical Matorral desertico Subalpino Subtropical Matorral desertico Subtropical Matorral desertico Templado calido Matorral desertico Templado calido Matorral desertico Templado calido Matorral desertico Templado calido Paramo humedo Subalpino Subtropical Paramo humedo Subalpino Subtropical Paramo muy humedo Subalpino Subtropical Paramo pluvial Subalpino Subtropical Tundra humeda Alpino Subtropical Tundra muy humeda Alpino Subtropical Tundra muy humeda Alpino Subtropical Tundra pluvial Alpino Subtropical 1975.0 3.1	Desierto perarido Montano Subtropical	109.9	0.2
Desierto semiarido Subalpino Subtropical Desierto superarido Montano Bajo Subtrop Desierto superarido Subtropical Desierto superarido Subtropical Desierto superarido Templado calido Estepa espinosa Montano Bajo Subtropical Estepa Montano Subtropical Matorral desertico Montano Bajo Subtropi Matorral desertico Montano Bajo Subtropi Matorral desertico Montano Subtropical Matorral desertico Subalpino Subtropical Matorral desertico Subalpino Subtropical Matorral desertico Subtropical Matorral desertico Templado calido Matorral desertico Templado calido Matorral desertico Templado calido Paramo humedo Subalpino Subtropical Paramo humedo Subalpino Subtropical Paramo muy humedo Subalpino Subtropical Paramo muy humedo Subalpino Subtropical Tundra humeda Alpino Subtropical Tundra muy humeda Alpino Subtropical Tundra muy humeda Alpino Subtropical Tundra pluvial Alpino Subtropical Tundra pluvial Alpino Subtropical Tundra pluvial Alpino Subtropical Tundra pluvial Alpino Subtropical	Desierto perarido Subtropical	268.4	0.4
Desierto superarido Montano Bajo Subtrop Desierto superarido Subtropical Desierto superarido Templado calido Desierto superarido Templado calido Estepa espinosa Montano Bajo Subtropical Estepa Montano Subtropical Matorral desertico Montano Bajo Subtropi Matorral desertico Montano Subtropical Matorral desertico Montano Subtropical Matorral desertico Subalpino Subtropical Matorral desertico Subtropical Matorral desertico Subtropical Matorral desertico Templado calido Matorral desertico Templado calido Nival Subtropical Paramo humedo Subalpino Subtropical Paramo muy humedo Subalpino Subtropical Paramo muy humedo Subalpino Subtropical Paramo pluvial Subalpino Subtropical Tundra humeda Alpino Subtropical Tundra muy humeda Alpino Subtropical Tundra pluvial Alpino Subtropical Tundra pluvial Alpino Subtropical Tundra pluvial Alpino Subtropical 1975.0 3.1	Desierto perarido Templado calido	3390.7	5.4
Desierto superarido Subtropical Desierto superarido Templado calido 1171.6 Estepa espinosa Montano Bajo Subtropical Estepa Montano Subtropical Matorral desertico Montano Bajo Subtropi Matorral desertico Montano Subtropical Matorral desertico Montano Subtropical Matorral desertico Subtropical Matorral desertico Subalpino Subtropical Matorral desertico Subtropical Matorral desertico Subtropical Matorral desertico Templado calido Nival Subtropical Paramo humedo Subalpino Subtropical Paramo muy humedo Subalpino Subtropical Paramo pluvial Subalpino Subtropical Tundra humeda Alpino Subtropical Tundra muy humeda Alpino Subtropical Tundra pluvial Alpino Subtropical 1975.0 3.1	Desierto semiarido Subalpino Subtropical	511.0	0.8
Desierto superarido Templado calido Estepa espinosa Montano Bajo Subtropical 307.4 0.5 Estepa Montano Subtropical 794.0 1.3 Matorral desertico Montano Bajo Subtropi 1354.2 2.1 Matorral desertico Montano Subtropical 3768.7 6.0 Matorral desertico Subalpino Subtropical 3481.6 5.5 Matorral desertico Subtropical 255.9 0.4 Matorral desertico Templado calido 2692.2 4.3 Nival Subtropical 1822.8 2.9 Paramo humedo Subalpino Subtropical 8156.4 12.9 Paramo muy humedo Subalpino Subtropical 4641.0 7.3 Paramo pluvial Subalpino Subtropical 732.0 1.2 Tundra humeda Alpino Subtropical 3116.9 4.9 Tundra pluvial Alpino Subtropical 1975.0 3.1	Desierto superarido Montano Bajo Subtrop	2308.6	3.6
Estepa espinosa Montano Bajo Subtropical 307.4 0.5 Estepa Montano Subtropical 794.0 1.3 Matorral desertico Montano Bajo Subtropi 1354.2 2.1 Matorral desertico Montano Subtropical 3768.7 6.0 Matorral desertico Subalpino Subtropical 3481.6 5.5 Matorral desertico Subtropical 255.9 0.4 Matorral desertico Templado calido 2692.2 4.3 Nival Subtropical 1822.8 2.9 Paramo humedo Subalpino Subtropical 8156.4 12.9 Paramo muy humedo Subalpino Subtropical 4641.0 7.3 Paramo pluvial Subalpino Subtropical 732.0 1.2 Tundra humeda Alpino Subtropical 279.5 0.4 Tundra muy humeda Alpino Subtropical 3116.9 4.9 Tundra pluvial Alpino Subtropical 1975.0 3.1	Desierto superarido Subtropical	1233.2	1.9
Estepa Montano Subtropical 794.0 1.3 Matorral desertico Montano Bajo Subtropi 1354.2 2.1 Matorral desertico Montano Subtropical 3768.7 6.0 Matorral desertico Subalpino Subtropical 3481.6 5.5 Matorral desertico Subtropical 255.9 0.4 Matorral desertico Templado calido 2692.2 4.3 Nival Subtropical 1822.8 2.9 Paramo humedo Subalpino Subtropical 8156.4 12.9 Paramo muy humedo Subalpino Subtropical 4641.0 7.3 Paramo pluvial Subalpino Subtropical 732.0 1.2 Tundra humeda Alpino Subtropical 279.5 0.4 Tundra muy humeda Alpino Subtropical 3116.9 4.9 Tundra pluvial Alpino Subtropical 1975.0 3.1	Desierto superarido Templado calido	1171.6	1.8
Matorral desertico Montano Bajo Subtropi1354.22.1Matorral desertico Montano Subtropical3768.76.0Matorral desertico Subalpino Subtropical3481.65.5Matorral desertico Subtropical255.90.4Matorral desertico Templado calido2692.24.3Nival Subtropical1822.82.9Paramo humedo Subalpino Subtropical8156.412.9Paramo muy humedo Subalpino Subtropical4641.07.3Paramo pluvial Subalpino Subtropical732.01.2Tundra humeda Alpino Subtropical279.50.4Tundra muy humeda Alpino Subtropical3116.94.9Tundra pluvial Alpino Subtropical1975.03.1	Estepa espinosa Montano Bajo Subtropical	307.4	0.5
Matorral desertico Montano Subtropical3768.76.0Matorral desertico Subalpino Subtropical3481.65.5Matorral desertico Subtropical255.90.4Matorral desertico Templado calido2692.24.3Nival Subtropical1822.82.9Paramo humedo Subalpino Subtropical8156.412.9Paramo muy humedo Subalpino Subtropical4641.07.3Paramo pluvial Subalpino Subtropical732.01.2Tundra humeda Alpino Subtropical279.50.4Tundra muy humeda Alpino Subtropical3116.94.9Tundra pluvial Alpino Subtropical1975.03.1	Estepa Montano Subtropical	794.0	1.3
Matorral desertico Subalpino Subtropical 3481.6 5.5 Matorral desertico Subtropical 255.9 0.4 Matorral desertico Templado calido 2692.2 4.3 Nival Subtropical 1822.8 2.9 Paramo humedo Subalpino Subtropical 8156.4 12.9 Paramo muy humedo Subalpino Subtropical 4641.0 7.3 Paramo pluvial Subalpino Subtropical 732.0 1.2 Tundra humeda Alpino Subtropical 279.5 0.4 Tundra muy humeda Alpino Subtropical 3116.9 4.9 Tundra pluvial Alpino Subtropical 1975.0 3.1	Matorral desertico Montano Bajo Subtropi	1354.2	2.1
Matorral desertico Subtropical255.90.4Matorral desertico Templado calido2692.24.3Nival Subtropical1822.82.9Paramo humedo Subalpino Subtropical8156.412.9Paramo muy humedo Subalpino Subtropical4641.07.3Paramo pluvial Subalpino Subtropical732.01.2Tundra humeda Alpino Subtropical279.50.4Tundra muy humeda Alpino Subtropical3116.94.9Tundra pluvial Alpino Subtropical1975.03.1	Matorral desertico Montano Subtropical	3768.7	6.0
Matorral desertico Templado calido 2692.2 4.3 Nival Subtropical 1822.8 2.9 Paramo humedo Subalpino Subtropical 8156.4 12.9 Paramo muy humedo Subalpino Subtropical 4641.0 7.3 Paramo pluvial Subalpino Subtropical 732.0 1.2 Tundra humeda Alpino Subtropical 279.5 0.4 Tundra muy humeda Alpino Subtropical 3116.9 4.9 Tundra pluvial Alpino Subtropical 1975.0 3.1	Matorral desertico Subalpino Subtropical	3481.6	5.5
Nival Subtropical 1822.8 2.9 Paramo humedo Subalpino Subtropical 8156.4 12.9 Paramo muy humedo Subalpino Subtropical 4641.0 7.3 Paramo pluvial Subalpino Subtropical 732.0 1.2 Tundra humeda Alpino Subtropical 279.5 0.4 Tundra muy humeda Alpino Subtropical 3116.9 4.9 Tundra pluvial Alpino Subtropical 1975.0 3.1	Matorral desertico Subtropical	255.9	0.4
Paramo humedo Subalpino Subtropical 8156.4 12.9 Paramo muy humedo Subalpino Subtropical 4641.0 7.3 Paramo pluvial Subalpino Subtropical 732.0 1.2 Tundra humeda Alpino Subtropical 279.5 0.4 Tundra muy humeda Alpino Subtropical 3116.9 4.9 Tundra pluvial Alpino Subtropical 1975.0 3.1	Matorral desertico Templado calido	2692.2	4.3
Paramo muy humedo Subalpino Subtropical 4641.0 7.3 Paramo pluvial Subalpino Subtropical 732.0 1.2 Tundra humeda Alpino Subtropical 279.5 0.4 Tundra muy humeda Alpino Subtropical 3116.9 4.9 Tundra pluvial Alpino Subtropical 1975.0 3.1	Nival Subtropical	1822.8	2.9
Paramo pluvial Subalpino Subtropical 732.0 1.2 Tundra humeda Alpino Subtropical 279.5 0.4 Tundra muy humeda Alpino Subtropical 3116.9 4.9 Tundra pluvial Alpino Subtropical 1975.0 3.1	Paramo humedo Subalpino Subtropical	8156.4	12.9
Tundra humeda Alpino Subtropical279.50.4Tundra muy humeda Alpino Subtropical3116.94.9Tundra pluvial Alpino Subtropical1975.03.1	Paramo muy humedo Subalpino Subtropical	4641.0	7.3
Tundra muy humeda Alpino Subtropical 3116.9 4.9 Tundra pluvial Alpino Subtropical 1975.0 3.1	Paramo pluvial Subalpino Subtropical	732.0	1.2
Tundra pluvial Alpino Subtropical 1975.0 3.1	Tundra humeda Alpino Subtropical	279.5	0.4
	Tundra muy humeda Alpino Subtropical	3116.9	4.9
63337.0 100	Tundra pluvial Alpino Subtropical	1975.0	3.1
		63337.0	100

Fuente: PLANGRACC, 2012

2.2 La Cuenca del río Ocoña

2.2.1 Ubicación geográfica

La cuenca del río Ocoña, pertenece a la Región Hidrográfica del Pacifico y se encuentra ubicada en la zona sur del Perú.

Geográficamente se ubica entre los meridianos 72º20' y 74º00' de longitud Oeste, y entre los paralelos 14º15 y 16º30' de Latitud Sur.

Altitudinalmente, se extiende desde los 0 msnm hasta los 6445 msnm (en la cumbre del nevado Coropuna ubicada a 150 km NO de la ciudad de Arequipa, 15°33′S, 72°36′W.), abarca 7 provincias de las regiones de Arequipa (4), Ayacucho (2) y Apurímac (1). Recibe aportes de la cordillera del Huanzo y de altos nevados, entre los que destacan el Coropuna (6445 msnm), Solimana (6095 msnm), Sara Sara (5505 msnm) y el Firura (5500 msnm); que, entre otros, hacen de la cuenca del río Ocoña la segunda en importancia del Perú, por la magnitud de sus masas glaciares y en razón de la descarga de agua durante la época de estiaje y por el área húmeda que posee como el tamaño de la cuenca, de las áreas de nevados permanentes y lagunas (SENAMHI, 2009).

Políticamente, se encuentra ubicada dentro de los departamentos de Arequipa (provincias de La Unión, Caraveli, Condesuyos y Camaná), Ayacucho (provincias de Parinacochas y Paucar del Sara Sara) y Apurímac (provincias de Aymares).

2.2.2 Accesibilidad y vías de comunicación

El acceso a la cuenca del río Ocoña en general es difícil, debido a la accidentada geografía que presenta en especial en altitudes por encima de los 2000 m.s.n.m., y la falta de vías de comunicación. La zona más accesible es la parte baja denominada Valle de Ocoña, entre los 0 y 1000 m.s.n.m. El acceso hacia la zona del valle la encontramos a la altura del kilómetro 782 de la carretera Panamericana Sur (distrito de Ocoña), a partir de aquí se tiene acceso por medio de una trocha carrozable. Para acceder a las partes altas de la cuenca es restringido, debido a que existen pocas vías de comunicación y el transporte público es limitado.

2.2.3 Produccion agricola

La actividad agrícola en la cuenca Ocoña esta comprendida por lo siguientes: alfalfa, arroz, maíz chala, cebolla, papa, frijol grano seco, tuna, cochinilla, ajo, olivo, quinua, trigo, maíz amiláceo. Las zonas altitudinales agrícolas en la cuenca se han clasificado como:

- En la zona baja de producción que se puede denominar como "primera zona de producción", se ubica precisamente en inmediaciones de las Provincias de Camaná y Condesuyos, en altitudes que van desde los 500 a 1500 m.s.n.m. Los cultivos predominantes arroz, trigo, menestras, olivo, algodón y caña de azúcar.
- En la zona media de producción que se puede denominar como "segunda zona de producción", se ubica precisamente en inmediaciones de las Provincias de Camaná, Condesuyos, Caraveli, La Unión, Paucar Sara Sara, Parinacochas; en altitudes que van desde los 1500 a 3800 m.s.n.m. Los cultivos predominantes alfalfa, hortalizas, cebolla, maíz, páprika, papa, maíz amiláceo, maíz forrajero, kiwicha, ajo, cebolla, arveja, zapallo, zanahoria, habas y cebada.
- En la zona alta de producción que se puede denominar como "tercera zona de producción", se ubica precisamente en inmediaciones de las Provincias de Condesuyos, La Unión, Paucar Sara Sara, Parinacochas; en altitudes que van desde los 3800 a 4200 m.s.n.m. corresponden a las zonas fría y de fuertes heladas en invierno, Los cultivos predominantes Los cultivos principales son la maca, quinua, cañihua y algunas variedades de papa, forrajes cultivables

(cebada forrajera, avena forrajera, pastos asociados) y los pastos naturales a más de 4200 m.s.n.m.

2.2.4 Zonas de vida

En la cuenca Ocoña, predomina paramo húmedo subalpino subtropical con 31.9% (hacia la parte alta de la cuenca) y estepa montano subtropical con 15.4% (hacia norte de la parte alta, subcuenca Pachicahaca- 4, Subcuenca Mirmaca -sub 8, Unidad hidrográfica 13691 -sub 9 y subcuca Parinacochas -sub 11) del área total respectivamente. El área nival subtropical que aporta al escurrimiento superficial abarca 4.5% del área total de la cuenca.

Tabla 2-6 Zonas de vida en la cuenca Ocoña

Descripción	Area Km2	Porcentaje (%)
Desierto arido Montano Subtropical	234.2	1.5
Desierto desecado Montano Bajo Subtropic	232.6	1.5
Desierto desecado Subtropical	1329.3	8.3
Desierto perarido Montano Bajo Subtropic	379.9	2.4
Desierto perarido Templado calido	97.3	0.6
Desierto semiarido Subalpino Subtropical	404.6	2.5
Desierto superarido Montano Bajo Subtrop	426.5	2.7
Desierto superarido Subtropical	135.6	0.8
Desierto superarido Templado calido	5.8	0.0
Estepa espinosa Montano Bajo Subtropical	405.4	2.5
Estepa Montano Subtropical	2459.0	15.4
Matorral desertico Montano Bajo Subtropi	579.0	3.6
Matorral desertico Montano Subtropical	904.6	5.7
Matorral desertico Subalpino Subtropical	142.6	0.9
Matorral desertico Subtropical	211.7	1.3
Matorral desertico Templado calido	59.0	0.4
Nival Subtropical	715.5	4.5
Paramo humedo Subalpino Subtropical	5109.7	31.9
Paramo muy humedo Subalpino Subtropical	975.6	6.1
Paramo pluvial Subalpino Subtropical	42.0	0.3
Tundra muy humeda Alpino Subtropical	387.6	2.4
Tundra pluvial Alpino Subtropical	760.5	4.8
	15998.1	100.0

Fuente: PLANGRACC, 2012

2.2.5 Hidrografía del río Ocoña

La cuenca del río Ocoña se origina en la parte alta de la cadena de montañas nevadas de Chancoaña, corresponde a la región del Pacífico, tiene un área total de drenaje hasta su desembocadura de 15 913,2 km2, contando con una longitud de cauce principal desde sus nacientes de 165,6 km y una pendiente media de cauce de 0,97%. Su escurrimiento superficial del río Ocoña se origina de las precipitaciones que ocurren en su cuenca alta y, con gran incidencia, de los deshielos de los nevados, cuyos aportes contribuyen a mantener un caudal elevado en época de estiaje; ello hace del río Ocoña uno de los más regulares de nuestra Costa.

Los nevados más importantes son el Solimana, Coropuna, Firura, Sapohuana, Chulluni y Sara Sara. La altura media de la cuenca está en la costa de los 3 600 msnm. Se pone de manifiesto que durante los meses de Enero a Marzo precipita la mayor parte del total anual, y que la estación más seca corresponde a los meses de Junio a Septiembre.

Esta cuenca Ocoña con fines del presente Estudio se ha delimitado en 20 subcuencas Los cursos principales a esta cuenca son los ríos Huanca Huanca, Oyolo, Cotahuasi, Mirmaca, Maran, Arma, Chorunga.

Limites hidrográficos, la cuenca del rio Ocoña limita por el norte con la cuenca del río Caraveli, Chala, Chaparra, Atico y Yauca; por el sur con la cuenca del río Camana-Majes, por el este con la cuenca del río Apurímac y por el oeste con el océano Pacifico.

El escurrimiento superficial del río Ocoña se debe principalmente a la precipitación estacional que ocurre en su cuenca alta y los deshielos de los nevados haciendo posible que el río Ocoña presente agua incluso en época de estiaje, teniendo un régimen bastante regular.

2.3 La cuenca del río Camaná-Majes

2.3.1 Ubicación geográfica

La cuenca del río Camana se ubica geográficamente entre los paralelos 16° 30′ y 16° 40′ de latitud Sur y los meridianos 72° 40′ y 72° 50′ de longitud Oeste de Greenwich.

Altitudinalmente, se extiende desde el nivel del mar hasta la línea divisoria de aguas entre la cuenca del rio Camana y la Intercuenca Alto Apurímac y cuencas del río Ramis y rio Cabanillas a una altitud aproximada de 4 800 m.s.n.m.

Políticamente ocupa las provincias de Camaná, Castilla, Caylloma, Condesuyos y La Unión, todos ellos en el departamento de Arequipa. Además, ocupa el distrito de Condoroma, en la provincia de Espinar del departamento de Cusco; así como el distrito de Santa Lucía, en la provincia de Lampa, del departamento de Puno.

Se enmarca dentro de la cuenca Colca-Majes-Camaná. La cuenca del río Colca pertenece a la Región Hidrografica del Pacífico. La cuenca del Colca es un complejo hidrográfico que da origen al río del mismo nombre y recibe a lo largo de su recorrido aportes de las subcuencas tributarias. En la parte baja de la cuenca el río Colca cambia de nombre a río Majes, efectúa su recorrido en dirección NE – SO hasta desembocar en el Océano Pacífico, al Norte de la ciudad de Camaná, en donde toma el nombre de esta ciudad.

La Cuenca Majes – Camaná se localiza en el departamento de Arequipa, en el sur del Perú. El área superficial es aproximadamente 17 031 km2 de las cuales 12 493 km2 se ubican en la parte húmeda de la cuenca. Se considera que la producción de escorrentía superficial es despreciable por debajo de 2800 msnm. Las zonas bajas son muy secas, la precipitación promedio anual en las estaciones costeras están por debajo de 10 mm/año. En la línea divisoria de las aguas la precipitación puede superar los 700 mm/año. La precipitación anual aumenta con la altitud así como la intensidad de la lluvia también aumenta con la altitud

2.3.2 Accesibilidad y vías de comunicación

El acceso principal a la cuenca del rio Camana Majes es la carretera Panamericana Sur (Lima – Arequipa), donde existes un desvió a la altura del km 847, que da inicio a la vía asfaltada de la carretera entrada a la Pampas de Majes. Desde la ciudad de Lima hay servicios interprovinciales de transporte terrestre hacia esta ciudad. Via Aérea se comunicación con distintos departamentos del Perú (cusco, Tacna, Juliaca), asi como de Bolivia (La Paz y Santa Cruz) y Chile (Arica, Iquique, Santiago). El Aeropuerto Alfredo Chávez Ballón está ubicada 25 min de la capital del Departamento de Arequipa. Via Férrea cuenta con una amplia red ferroviaria que une las ciuades de Arequipa - Juliaca - Puno - Cuzco y Quillabamba.

2.3.3 Producción agricola

La actividad agrícola en la cuenca Camana esta comprendida por lo siguientes: alfalfa, arroz, maíz chala, cebolla, papa, frijol grano seco, tuna – cochinilla, ajo, olivo, quinua, trigo, maíz amiláceo, haba, arveja, cebada y forrajes. Las zonas altitudinales agrícolas en la cuenca se han clasificado como:

- La zona baja de producción que se puede denominar como "primera zona de producción", se ubica precisamente en inmediaciones de las Provincias de Camana, Condesuyos, Castilla, Caylloma, en altitudes que van desde los 100 a 1500 m.s.n.m. Los cultivos predominantes arroz, trigo, menestras, olivo, algodón y caña de azúcar.
- La zona media de producción que se puede denominar como "segunda zona de producción", se ubica precisamente en inmediaciones de las Provincias de Condesuyos, Castilla, Caylloma; en altitudes que van desde los 1500 a 3800 m.s.n.m. Los cultivos predominantes alfalfa, hortalizas, cebolla, maíz, páprika, papa, maíz amiláceo, maíz forrajero, kiwicha, ajo, cebolla, arveja, zapallo, zanahoria, habas y cebada.
- La zona alta de producción que se puede denominar como "tercera zona de producción", se ubica precisamente en inmediaciones de las Provincias de Condesuyos, Castilla, Caylloma, Espinar y Lampa; en altitudes que van desde los 3800 a 4200 m.s.n.m. corresponden a las zonas fría y de fuertes heladas en invierno, Los cultivos predominantes Los cultivos principales son la maca, quinua, cañihua y algunas variedades de papa, forrajes cebada forrajera, avena forrajera, pastos asociados y los pastos naturales a más de 4200 m.s.n.m.

2.3.1 Zonas de vida

En la cuenca Camana, predomina paramo húmedo subalpino subtropical abarca el 19.6% del área total de la cuenca, el área nival o subtropical abarca 4.4% es el que aporta al escurrimiento supervicial de la cuenca del rio Camana.

Tabla 2-7 Zonas de vida en la cuenca Ocoña

Descripción	Area	Porcentaje
Descripción	Km2	(%)
Bosque humedo Montano Subtropical	184.6	1.1
Desierto arido Montano Subtropical	182.0	1.1
Desierto desecado Montano Bajo Subtropic	60.3	0.4
Desierto desecado Subtropical	2325.0	13.5
Desierto perarido Montano Bajo Subtropic	525.2	3.1
Desierto perarido Subtropical	268.4	1.6
Desierto perarido Templado calido	189.2	1.1
Desierto semiarido Subalpino Subtropical	61.8	0.4
Desierto superarido Montano Bajo Subtrop	38.5	0.2
Desierto superarido Subtropical	758.2	4.4
Desierto superarido Templado calido	3.7	0.0
Estepa espinosa Montano Bajo Subtropical	144.2	0.8
Estepa Montano Subtropical	225.7	1.3
Matorral desertico Montano Bajo Subtropi	246.3	1.4
Matorral desertico Montano Subtropical	933.4	5.4
Matorral desertico Subalpino Subtropical	1371.2	8.0
Matorral desertico Subtropical	108.5	0.6
Matorral desertico Templado calido	72.7	0.4
Nival Subtropical	750.4	4.4
Paramo humedo Subalpino Subtropical	3363.7	19.6
Paramo muy humedo Subalpino Subtropical	3023.7	17.6
Paramo pluvial Subalpino Subtropical	3.5	0.0
Tundra muy humeda Alpino Subtropical	1399.2	8.1
Tundra pluvial Alpino Subtropical	961.9	5.6
	17201.5	100.0

Fuente: PLANGRACC, 2012

2.3.2 Hidrografía del río Camana

El río Camaná Majes nace en las alturas de los cerros Yarenate y Torre, con el nombre de Paco Paco, el que conserva hasta la altura de la localidad de Llamiñuyoc; adopta posteriormente, el nombre de río Chilamayo hasta la estación de aforos Dique Los Españoles, luego el nombre de río Colca, hasta la desembocadura del río Andamayo, a continuación el nombre de río Majes, hasta la altura de Palo Parado y finalmente, el de río Camaná, desde este último hasta su desembocadura con el Océano Pacífico (SENAMHI, 2009). El área total de drenaje hasta su desembocadura es de 17 049,51 km2, el perímetro de la cuenca es 1 089,64 km, contando con una longitud de cauce principal desde sus nacientes de 272,64 km.

La cuenca del río Colca presenta la forma achatada, ligeramente ensanchado y alargado en su parte superior, cuyo patrón de drenaje es de tipo dendrítica.

El río Colca- Majes y Camaná, en la Región Hidrografica del Pacífico es uno de los de mayor longitud, sus nacientes está en el Cerro Yanasalla, a 4 886 msnm al NE del departamento de Arequipa, en el

límite con el departamento de Puno. En sus inicios sigue una dirección SE-NO, atravesando las Pampas de Acucullo, Lazayacinca y Colca, donde toma este nombre. El río Colca, recibe una serie de afluentes, siendo el mayor el río Negrillo, luego recibe las aguas del río Acopunco y a partir de esta confluencia cambia de rumbo y se dirige al SSO, hasta Chivay donde varía nuevamente su dirección y discurre con rumbo E-W, formando un importante valle agrícola entre los 3 651 m (Chivay) y los 2 219 m (confluencia del Colca con el río Huaro Rumi). El valle agrícola y el Colca formando un largo y profundo cañón, sigue con dirección NO-SE hasta confluir con el río Andamayo, donde una vez más cambia de rumbo y de nombre pues se dirige con dirección N-S, y la denominación de río Majes nombre que se mantiene hasta poco antes de su desembocadura, llegando al mar como río Camaná, al norte de la ciudad de Camaná.

Su longitud es de 397 Km, con una pendiente promedio de 1.2%. Tiene una forma ensanchada en su sector superior y alargada en el inferior. Como casi todos los ríos de la costa, es de fondo profundo y quebrado y de fuertes pendientes. Se encuentran en su parte superior varias lagunas como las de Arcata, Huisca Huisca, Mamacocha, Chilacocha, Samaccota y Mucurca. Sus afluentes principales por la margen derecha, son los ríos Blanquillo, Negrillo, Condoroma, Moqueruyo, Molloco, Chalhuanca, Ayo, Mamacocha y Capisa. Por la margen izquierda los ríos Antasalla, Callalli, Hualca Hualca y Huambo.

Limites hidrográficos, la cuenca del rio Camana limita por el norte, con las cuencas de los ríos Apurimac y Ocoña; por el sur, con la cuenca del río Quilca y el Océano Pacifico por el Este, con las cuencas de los ríos Tambo y Apurímac y, por el oeste, con la cuenca del río Ocoña.

El escurrimiento superficial del río Camana Majes se debe principalmente a la precipitación estacional que ocurre en su cuenca alta.

2.3.3 Infraestructura Hidráulica

La cuenca Camaná Colca Majes, tiene tres reservorios de regulación localizadas en la parte alta de la cuenca. La más importante es la represa Condoroma, la cual sirve como sistema de abastecimiento para las Pampas de Majes, ubicadas en el valle (parte baja) de la cuenca, tal como fue concebido en el proyecto de irrigación Majes Siguas. Los otros dos reservorios (El Pañe y Dique Los Españoles) transvasas sus recursos a la cuenca del río Quilca-Chili. Particulares consideraciones se tuvo en cuenta para la elaboración del modelo de esta cuenca, la más importante es la de considerar el aporte regulado de los caudales salientes de los reservorios. Condoroma aporta al sistema hídrico mientras que las dos represas restantes no, esto fue especificado en la base de los datos de entrada del modelo SWAT de tal manera que existan cero flujos de salida de estas represas y no aporten al flujo del sistema de la cuenca Camaná Majes.

La ubicación de cada embalse es tomado como un subcuenca independiente, en donde el proceso hidrológico para la generación de las descargas de salida es tratado de una forma distinta, el esquema se muestra en la Figura 2-1. En la cuenca del rio Colca SENAMHI opera la estación HLG Sibayo tal cual se ilustra en la Figura 2-2.

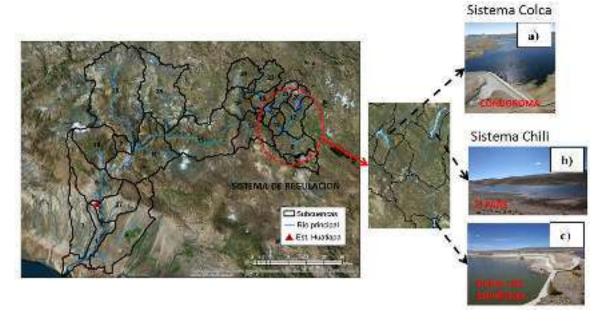


Figura 2-2 Principales embalses en la cuenca Camaná Majes. a) Represa Condoroma, b) El Pañe y c) Dique Los Españoles respectivamente.

Figura 2-3 Estación Hidrológica HLG-Sibayo en la cuenca alta del río Colca

CAPÍTULO III Datos y Métodos

3. Datos y métodos

3.1 Datos

3.1.1 Datos hidroclimaticos

La información meteorologica e hidrológica básica utilizada corresponde a la Red Observacional del Servicio Nacional de Meteorología e Hidrológica del Peru— SENAMHI, en el ámbito del departamento de Arequipa y cuencas Ocoña y Camana Majes. La Información es de escala mensual y las variables analizadas fueron: precipitación, temperatura máxima, temperatura mínima y caudales.

La Tabla 3-1 y 3-2 muestran las características de ubicación geográfica de la red de estaciones meteorologicas e hidrológicas utilizadas para el presente estudio, así como el código con la cual son identificadas.

Tabla 3-1 Red de estaciones meteorológicas

Codigo	Código	Estación	Longitud	Latitud	Altitud	Ro	Tmax	Tmin	Tmed
114034 Llally -70.90 -14.95 3980 x <th>Codigo</th> <th>LStacion</th> <th>(o)</th> <th>(o)</th> <th>msnm</th> <th>- rp</th> <th>ттах</th> <th>1111111</th> <th>imeu</th>	Codigo	LStacion	(o)	(o)	msnm	- rp	ттах	1111111	imeu
116023	114028	Chalhuanca	-73.18	-14.39	3358	х			
117024 Otora -70.85 -17.01 2550 x 116021 Puquina -71.17 -16.63 3284 x 116049 Quinistaquillas -70.90 -16.78 1590 x 114030 Santo Tomas -72.09 -14.40 3253 x 114032 Yauri -71.42 -14.82 3927 x 115085 Andahua -72.35 -15.49 3927 x 115085 Andahua -72.35 -15.49 3927 x 115088 Ayo -72.49 -16.07 3528 x x x 115041 Cabanaconde -71.97 -15.62 1956 x 115041 115041 Cabanaconde -71.97 -15.62 1956 x x x x 115041 Cabanaconde -71.97 -15.62 1956 x x x x 115041 Caraveli -73.36 -15.77 23 <td>114034</td> <td>Llally</td> <td>-70.90</td> <td>-14.95</td> <td>3980</td> <td>Х</td> <td></td> <td></td> <td></td>	114034	Llally	-70.90	-14.95	3980	Х			
116021	116023	Omate	-70.98	-16.68	2080	Х	х	x	х
116049 Quinistaquillas -70.90 -16.78 1590 x 114030 Santo Tomas -72.09 -14.40 3253 x 100150 Yacango -70.87 -17.09 2191 x x x 114032 Yauri -71.42 -14.82 3927 x <t< td=""><td>117024</td><td>Otora</td><td>-70.85</td><td>-17.01</td><td>2550</td><td>Х</td><td></td><td></td><td></td></t<>	117024	Otora	-70.85	-17.01	2550	Х			
114030 Santo Tomas -72.09 -14.40 3253 x 100150 Yacango -70.87 -17.09 2191 x x x x 114032 Yauri -71.42 -14.82 3927 x	116021	Puquina	-71.17	-16.63	3284	Х			
100150 Yacango -70.87 -17.09 2191 x x x x 114032 Yauri -71.42 -14.82 3927 x	116049	Quinistaquillas	-70.90	-16.78	1590	Х			
114032 Yauri -71.42 -14.82 3927 x 115085 Andahua -72.35 -15.49 3927 x 116014 Aplao -72.49 -16.07 3528 x x x x 115088 Ayo -72.27 -15.68 645 x x x x x 115041 Cabanaconde -71.97 -15.62 1956 x	114030	Santo Tomas	-72.09	-14.40	3253	Х			
115085 Andahua -72.35 -15.49 3927 x 116014 Aplao -72.49 -16.07 3528 x x x 115088 Ayo -72.27 -15.68 645 x x 115041 Cabanaconde -71.97 -15.62 1956 x 116013 Camana -72.70 -16.61 3379 x 115018 Caraveli -73.36 -15.77 23 x x x 115022 Caylloma -71.77 -15.18 1758 x x x 115022 Chala -74.24 -15.86 4327 x x x 100022 Chala -74.24 -15.86 4327 x x x x 115078 Chichas -72.92 -15.54 2120 x x x x x x x x x x x x x x x <td>100150</td> <td>Yacango</td> <td>-70.87</td> <td>-17.09</td> <td>2191</td> <td>Х</td> <td>х</td> <td>X</td> <td>х</td>	100150	Yacango	-70.87	-17.09	2191	Х	х	X	х
116014 Aplao -72.49 -16.07 3528 x x x 115088 Ayo -72.27 -15.68 645 x 115041 Cabanaconde -71.97 -15.62 1956 x 116013 Camana -72.70 -16.61 3379 x 115018 Caraveli -73.36 -15.77 23 x x x 115022 Caylloma -71.77 -15.18 1758 x x x 100022 Chala -74.24 -15.86 4327 x x x x 115078 Chichas -72.92 -15.54 2120 x x x x 115078 Chichas -72.92 -15.54 2120 x x x x x 115078 Chichas -72.92 -15.54 2120 x	114032	Yauri	-71.42	-14.82	3927	Х			
115088 Ayo -72.27 -15.68 645 x 115041 Cabanaconde -71.97 -15.62 1956 x 116013 Camana -72.70 -16.61 3379 x 115018 Caraveli -73.36 -15.77 23 x x x 115022 Caylloma -71.77 -15.18 1758 x x x 100022 Chala -74.24 -15.86 4327 x x 100026 Chaparra -73.87 -15.75 1140 x 115078 Chichas -72.92 -15.54 2120 x 115078 Chichas -72.92 -15.54 2120 x 115078 Chichas -72.92 -15.54 2120 x 115078 Chichas -72.92 -15.64 3661 x x x x x x x x x x x x x x x x x x	115085	Andahua	-72.35	-15.49	3927	Х			
115041 Cabanaconde -71.97 -15.62 1956 x 116013 Camana -72.70 -16.61 3379 x 115018 Caraveli -73.36 -15.77 23 x x x 115022 Caylloma -71.77 -15.18 1758 x x x 100022 Chala -74.24 -15.86 4327 x x x 100026 Chaparra -73.87 -15.75 1140 x x x x 115078 Chichas -72.92 -15.54 2120 x <	116014	Aplao	-72.49	-16.07	3528	Х	х	x	х
116013 Camana -72.70 -16.61 3379 x </td <td>115088</td> <td>Ayo</td> <td>-72.27</td> <td>-15.68</td> <td>645</td> <td>Х</td> <td></td> <td></td> <td></td>	115088	Ayo	-72.27	-15.68	645	Х			
115018 Caraveli -73.36 -15.77 23 x x x 115022 Caylloma -71.77 -15.18 1758 x x x 100022 Chala -74.24 -15.86 4327 x x x x 100026 Chaparra -73.87 -15.75 1140 x	115041	Cabanaconde	-71.97	-15.62	1956	Х			
115022 Caylloma -71.77 -15.18 1758 x 100022 Chala -74.24 -15.86 4327 x 100026 Chaparra -73.87 -15.75 1140 x 115078 Chichas -72.92 -15.54 2120 x 116020 Chiguata -71.40 -16.40 2943 x 115025 Chivay -71.60 -15.64 3661 x x x x 115089 Choco -72.12 -15.57 3192 x x 1 115020 Chuquibamba -72.65 -15.84 2832 x x x x x 114018 Copara -74.92 -14.98 620 x x x x x 115015 Coracora -73.78 -15.02 3172 x x x x 115019 Cotahuasi -72.89 -15.21 2675 x x x x 116058 Huanca -71.88 -16.03 3058 </td <td>116013</td> <td>Camana</td> <td>-72.70</td> <td>-16.61</td> <td>3379</td> <td>Х</td> <td></td> <td></td> <td></td>	116013	Camana	-72.70	-16.61	3379	Х			
100022 Chala -74.24 -15.86 4327 x 100026 Chaparra -73.87 -15.75 1140 x 115078 Chichas -72.92 -15.54 2120 x 116020 Chiguata -71.40 -16.40 2943 x 115025 Chivay -71.60 -15.64 3661 x x x x 115089 Choco -72.12 -15.57 3192 x	115018	Caraveli	-73.36	-15.77	23	Х	х	x	х
100026 Chaparra -73.87 -15.75 1140 x 115078 Chichas -72.92 -15.54 2120 x 116020 Chiguata -71.40 -16.40 2943 x 115025 Chivay -71.60 -15.64 3661 x x x x 115089 Choco -72.12 -15.57 3192 x <td>115022</td> <td>Caylloma</td> <td>-71.77</td> <td>-15.18</td> <td>1758</td> <td>Х</td> <td></td> <td></td> <td></td>	115022	Caylloma	-71.77	-15.18	1758	Х			
115078 Chichas -72.92 -15.54 2120 x 116020 Chiguata -71.40 -16.40 2943 x 115025 Chivay -71.60 -15.64 3661 x x x x 115089 Choco -72.12 -15.57 3192 x	100022	Chala	-74.24	-15.86	4327	Х			
116020 Chiguata -71.40 -16.40 2943 x 115025 Chivay -71.60 -15.64 3661 x x x x 115089 Choco -72.12 -15.57 3192 x x x x 115020 Chuquibamba -72.65 -15.84 2832 x	100026	Chaparra	-73.87	-15.75	1140	Х			
115025 Chivay -71.60 -15.64 3661 x <td>115078</td> <td>Chichas</td> <td>-72.92</td> <td>-15.54</td> <td>2120</td> <td>Х</td> <td></td> <td></td> <td></td>	115078	Chichas	-72.92	-15.54	2120	Х			
115089 Choco -72.12 -15.57 3192 x 115020 Chuquibamba -72.65 -15.84 2832 x 114018 Copara -74.92 -14.98 620 x 115015 Coracora -73.78 -15.02 3172 x x x 115019 Cotahuasi -72.89 -15.21 2675 x x x 115090 Huambo -72.10 -15.73 3500 x x x 116058 Huanca -71.88 -16.03 3058 x x x x 116005 La Joya -71.92 -16.59 1292 x x x x 116017 La Pampilla -71.52 -16.40 2400 x x x 115076 Lampa -73.36 -15.19 3192 x x x x 115036 Lomas -74.83 -15.57 35 x x x 114072 Lucanas -74.24 -14.63 3375	116020	Chiguata	-71.40	-16.40	2943	Х			
115020 Chuquibamba -72.65 -15.84 2832 x 114018 Copara -74.92 -14.98 620 x 115015 Coracora -73.78 -15.02 3172 x x x 115019 Cotahuasi -72.89 -15.21 2675 x x x 115090 Huambo -72.10 -15.73 3500 x x x 116058 Huanca -71.88 -16.03 3058 x x x x x 116005 La Joya -71.92 -16.59 1292 x x x x 116017 La Pampilla -71.52 -16.40 2400 x x x x 115076 Lampa -73.36 -15.19 3192 x x x x 115136 Lomas -74.83 -15.57 35 x x x 114072 Lucanas -74.24 -14.63 3375 x x x 115129 Machah	115025	Chivay	-71.60	-15.64	3661	Х	х	X	х
114018 Copara -74.92 -14.98 620 x 115015 Coracora -73.78 -15.02 3172 x x x 115019 Cotahuasi -72.89 -15.21 2675 x x 115090 Huambo -72.10 -15.73 3500 x 116058 Huanca -71.88 -16.03 3058 x 116005 La Joya -71.92 -16.59 1292 x x x 116017 La Pampilla -71.52 -16.40 2400 x x x 115076 Lampa -73.36 -15.19 3192 x x x x 116046 Las Salinas -71.15 -16.32 4322 x x x 115136 Lomas -74.83 -15.57 35 x x 114072 Lucanas -74.24 -14.63 3375 x 115129 Machahuay -72.50 -15.65 3150 x	115089	Choco	-72.12	-15.57	3192	Х			
115015 Coracora -73.78 -15.02 3172 x </td <td>115020</td> <td>Chuquibamba</td> <td>-72.65</td> <td>-15.84</td> <td>2832</td> <td>Х</td> <td></td> <td></td> <td></td>	115020	Chuquibamba	-72.65	-15.84	2832	Х			
115019 Cotahuasi -72.89 -15.21 2675 x 115090 Huambo -72.10 -15.73 3500 x 116058 Huanca -71.88 -16.03 3058 x 116005 La Joya -71.92 -16.59 1292 x x x 116017 La Pampilla -71.52 -16.40 2400 x 115076 Lampa -73.36 -15.19 3192 x x x 116046 Las Salinas -71.15 -16.32 4322 x 115136 Lomas -74.83 -15.57 35 x 114072 Lucanas -74.24 -14.63 3375 x 115129 Machahuay -72.50 -15.65 3150 x	114018	Copara	-74.92	-14.98	620	Х			
115090 Huambo -72.10 -15.73 3500 x 116058 Huanca -71.88 -16.03 3058 x 116005 La Joya -71.92 -16.59 1292 x x x 116017 La Pampilla -71.52 -16.40 2400 x x x x 115076 Lampa -73.36 -15.19 3192 x x x x 116046 Las Salinas -71.15 -16.32 4322 x x x 115136 Lomas -74.83 -15.57 35 x x 114072 Lucanas -74.24 -14.63 3375 x 115129 Machahuay -72.50 -15.65 3150 x	115015	Coracora	-73.78	-15.02	3172	Х	х	X	х
116058 Huanca -71.88 -16.03 3058 x 116005 La Joya -71.92 -16.59 1292 x x x x 116017 La Pampilla -71.52 -16.40 2400 x x x x 115076 Lampa -73.36 -15.19 3192 x x x x 116046 Las Salinas -71.15 -16.32 4322 x x x 115136 Lomas -74.83 -15.57 35 x x 114072 Lucanas -74.24 -14.63 3375 x 115129 Machahuay -72.50 -15.65 3150 x	115019	Cotahuasi	-72.89	-15.21	2675	Х			
116005 La Joya -71.92 -16.59 1292 x x x x 116017 La Pampilla -71.52 -16.40 2400 x	115090	Huambo	-72.10	-15.73	3500	Х			
116017 La Pampilla -71.52 -16.40 2400 x 115076 Lampa -73.36 -15.19 3192 x x x 116046 Las Salinas -71.15 -16.32 4322 x 115136 Lomas -74.83 -15.57 35 x 114072 Lucanas -74.24 -14.63 3375 x 115129 Machahuay -72.50 -15.65 3150 x	116058	Huanca	-71.88	-16.03	3058	Х			
115076 Lampa -73.36 -15.19 3192 x x x x 116046 Las Salinas -71.15 -16.32 4322 x 115136 Lomas -74.83 -15.57 35 x 114072 Lucanas -74.24 -14.63 3375 x 115129 Machahuay -72.50 -15.65 3150 x	116005	La Joya	-71.92	-16.59	1292	Х	x	X	х
116046 Las Salinas -71.15 -16.32 4322 x 115136 Lomas -74.83 -15.57 35 x 114072 Lucanas -74.24 -14.63 3375 x 115129 Machahuay -72.50 -15.65 3150 x	116017	La Pampilla	-71.52	-16.40	2400	Х			
115136 Lomas -74.83 -15.57 35 x 114072 Lucanas -74.24 -14.63 3375 x 115129 Machahuay -72.50 -15.65 3150 x	115076	Lampa	-73.36	-15.19	3192	Х	x	X	х
114072 Lucanas -74.24 -14.63 3375 x 115129 Machahuay -72.50 -15.65 3150 x	116046	Las Salinas	-71.15	-16.32	4322	Х			
115129 Machahuay -72.50 -15.65 3150 x	115136	Lomas	-74.83	-15.57	35	Х			
•	114072	Lucanas	-74.24	-14.63	3375	х			
115092 Madrigal -71.81 -15.62 3262 x		Machahuay		-15.65	3150	х			
	115092	Madrigal	-71.81	-15.62	3262	х			

- 4 11		Longitud	Latitud	Altitud				
Código	Estación	(o)	(o)	msnm	Pp	Tmax	Tmin	Tmed
100089	Mollendo	-72.02	-17.03	13	Х			
115086	Orcopampa	-72.34	-15.26	3801	Х			
114021	Palpa	-75.19	-14.54	300	Х			
116043	Pampa de Arrieros	-71.59	-16.06	3715	Х			
116006	Pampa de Majes	-72.21	-16.33	1434	Х	x	x	х
114026	Pampa Galeras	-74.40	-14.67	3950	Х			
115021	Pampacolca	-72.57	-15.71	2950	Х			
115017	Pauza	-73.36	-15.29	2652	Х			
115126	Pillones	-71.22	-15.98	4431	Х			
115101	Porpera	-71.32	-15.35	4152	Х			
115082	Puica	-72.67	-15.07	3661	Х			
115084	Pullhuay (Ayahuasi)	-72.77	-15.15	3113	Х			
116011	Punta Atico	-73.69	-16.23	20	Х	х	x	X
114023	Puquio	-74.14	-14.71	2977	Х	х	x	X
115024	Sibayo	-71.45	-15.49	3827	Х	X	x	х
115098	Tisco	-71.45	-15.35	4175	Х			
100142	Ubinas	-70.86	-16.38	3491	Х	х	x	X
117006	La Haciendita	-71.59	-17.00	360	Х			
115023	La Angostura	-71.65	-15.18	4256	Х	х	x	X
115029	Imata	-71.09	-15.84	4445	Х	х	x	X
156225	Ingenio	-74.96	-14.63	700	Х			
000864	Yanaquihua	-72.88	-15.78	3130	Х			
000801	Salamanca	-72.83	-15.50	3303	Х			
000837	Pampa Blanca	-71.72	-17.07	100	Х	х	x	X
000806	Moquegua	-70.93	-17.18	1420	Х			
158314	Tumilaca	-70.83	-17.13	1950	Х			
000839	La Pampilla	-71.45	-16.47	2400	Х	Х	X	Х
000799	Huasacache	-71.55	-16.47	2242	Х			
157328	Sumbay	-71.35	-15.98	4172	Х			
000803	Crucero Alto	-70.91	-15.78	4470	Х			
157312	Chachas	-72.26	-15.51	3055	Х			
157305	Chinchayllapa	-72.73	-14.92	4100	Х			
000849	El Frayle	-71.19	-16.08	4060		Х	Х	Х

Tabla 3-2 red de estaciones hidrológicas

Estación	Tipo	Latitud	Longitud	Elevación (msnm)
Puente Ocoña	Limnimétrica	-16°25'48.0"	-73°6'36.0"	23
Huatiapa	Limnimétrica	- 15°59'41.0"	- 72°28'13.0"	699

Para determinar las tendencias de precipitación y temperatura y sus niveles de significancia a escala anual y estacional en la Región Arequipa y en las cuencas de interés, se han seleccionado 81 estaciones meteorológicas convencionales del SENAMHI ubicadas en la región de estudio y en zonas vecinas (Figura 3-1), con registros de series diarias históricas, continuas, de buena calidad, comprendidas en el periodo de 1964-2016, teniendo en cuenta la necesidad de detectar cambios del clima en un período mayor a 30 años.

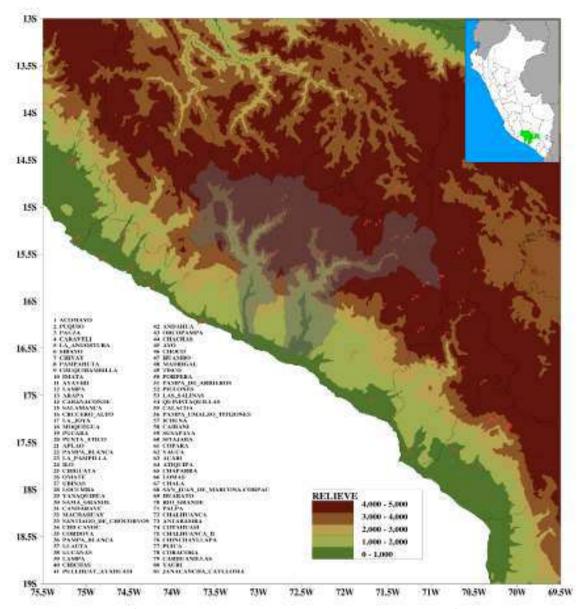
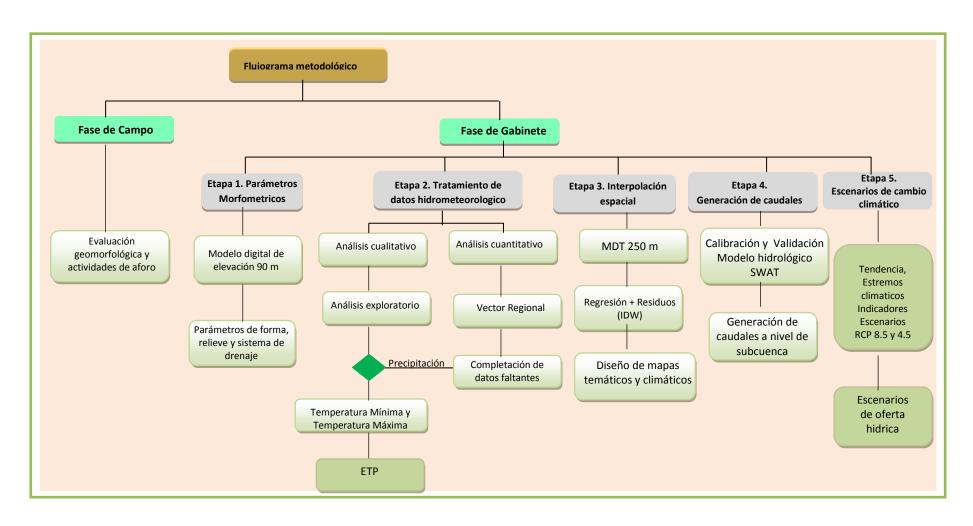


Figura 3-1 Datos climáticos provenientes de registros de estaciones meteorológicas de la red terrena del SENAMHI. Estaciones convencionales consideradas 81 para la ejecución del estudio

3.1.2 Información cartográfica

- Información vectorial de límites de división política, curvas de nivel, ríos, lagunas, nevados provenientes de las cartas nacionales del Perú a escala 1/100000 elaborado por el Instituto Geográfico Nacional – IGN.
- El límite de las macro unidades hidrográficas se utilizarán las delimitadas por la Autoridad Nacional del Agua ANA.
- Cobertura vectorial de zonas de vida elaborada en el marco del Estudio del PLANGRACC y clasificación climática del Peru (SENAMHI, 1994).
- Modelo digital de elevación del terreno de 90 m de resolución del producto satelital SRTM (Shuttle Radar Topography Mission) de la NASA.

3.2 Métodos


La metodología aplicada en el presente estudio tiene dos grandes componentes:

- Fase de campo, es la etapa donde se realiza el reconocimiento de la cuenca y sus principales obras de almacenamiento para fines del modelamiento hidrológico, así como actividades de aforos de comprobación.
- Fase de gabinete, comprende el desarrollo de etapas secuenciales de procesamiento y análisis de la información física e hidroclimatica del área de estudio.
 - Etapa 1. Determinación de parámetros morfométricos
 - Etapa 2. Tratamiento de datos hidrometeorológicos
 - Etapa 3. Interpolación espacial y elaboración de mapas hidroclimáticos
 - Etapa 4. Generación de caudales
 - Etapa 5. Generacion de escenarios de cambio climatico

La Figura 3-2 ilustra en el flujograma metodológico desarrollado en el presente estudio.

Figura 3-2. Flujograma metodológico para la caracterización hidroclimática

3.2.1 Fase de Campo

En esta Fase aprovechó la comisión de servicio de profesionales del SENAMHI que realizaron en el mes de junio la evaluación de campo de las estaciones meteorológicas e hidrológicas que fueron impactadas por el Niño costero del 2017. En esta etapa se pudo recoger información hidrológica relevante del sistema de almacenamiento de las represas existentes en la cuenca del río Camaná-Majes que administra el Proyecto Autoridad Autónoma de Majes – AUTODEMA. Dicha información hidrológica fue clave para realizar el modelamiento matemático de esta cuenca.

3.2.2 Fase de Gabinete

3.2.2.1 Etapa 1. Cálculo de parámetros morfométrico

Las características físicas de una cuenca desempeñan un papel esencial en la respuesta hidrológica. Recíprocamente, el carácter hidrológico de la misma contribuye considerablemente a formar sus características físicas. La unidad de análisis para definir los parámetros en adelante se ha denominado Subcuenca.

El proceso de delimitación de unidades hidrográficas se desarrolló con información del modelo de elevación digital (DEM) de 90 m. Se han delimitado bajo el soporte del programa Arc Hydro, siendo ello una herramienta de análisis hidrológico desarrollado por Centro de Investigaciones en Recursos de Agua (CRWR) de la Universidad de Texas, de los EE.UU. Su distribución es gratuita En http://www.crwr.utexas.edu/archydrotools/tools.html.

El Archydro utiliza un Modelo digital de elevación para delimitación automática de cuencas hidrográficas y de la red de drenaje. Además esta herramienta posee la capacidad de administrar una base de datos geográfica (Geodatabase) que permite integrar los diferentes elementos del sistema hidrológico de la cuenca, que lo diferencia de otros modelos que realizan similares tareas como Hec GeoHms muy utilizado en el análisis hidrológico en entorno de sistemas de información geográfica - Arc Gis 10.3.

A continuación se presenta los procesos realizados en Archydro para la delimitación de cuencas y se ilustra en forma secuencial para un mejor entendimiento de los geoprocesos:

Preprocesamiento del Terreno (TerrainPreprocessing)

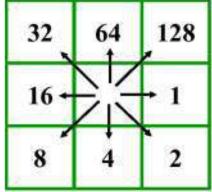
El preprocesamiento del terreno utiliza al DEM para identificar la superficie de drenaje. Una vez que se haya preprocesado, el DEM y sus derivados se puedan utilizar para la generación eficiente de la red de drenaje y la delimitación de la cuenca. Todos los pasos del preprocesamiento del terreno, se deben realizar en orden secuencial.

Reacondicionamiento del DEM (modelo de elevación digital) y llenado de vacíos en la grilla, no se pueden requerir, dependiendo de la calidad del DEM inicial.

DEM Reconditioning

Modifica el DEM por imposición de un elemento vectorial lineal. Esta función necesita como datos de entrada el DEM y una figura de clase lineal (rio) ambos deben estar presentes en el documento del mapa.

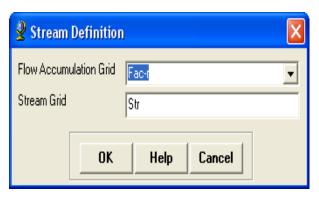
- FillSinks


Esta función que llena los vacíos en la grilla. Si una celda es rodeada por las celdas con una elevación más alta, el aguase atrapa en la celda y no puede fluir. Esta función Fill Sinks modifica el valor de la elevación para eliminar estos problemas.

- FlowDirection

Esta función calcula la dirección del flujo para una celda dada. Los valores en las celdas de la grilla dan la dirección del flujo, indica la dirección de la pendiente más escarpada de esa celda.

- Flow Accumulation


Muestra la función que calcula la acumulación del flujo en una grilla que contiene un número acumulado de celdas contra la corriente de una celda, para cada celda que este en la grilla de entrada.

- StreamDefinition

Calcula una grilla de la corriente que contiene un valor de "1" para todas las celdas en la celda de la acumulación del flujo de la entrada que tienen un valor más grande que el umbral dado. El resto de las celdas en la grilla de la corriente no contienen ningún dato. Un valor por defecto se exhibe para el umbral del río.

Este valor representa el 1% de la acumulación máxima del flujo: es el umbral recomendado para la determinación la corriente. Sin embargo, cualquier otro valor del umbral puede ser

seleccionado. Un umbral más pequeño resultará en una red más densa de la corriente y generalmente en un número más grande de cuencas delineado.

- Stream Segmentation


Esta función, crea una grilla de los segmentos de la corriente que tienen una identificación única. O un segmento puede ser un segmento principal, o puede ser definido como segmento entre dos ensambladuras del segmento. Todas las células, en un segmento particular, tienen el mismo código de la grilla que se especificó a ese segmento.

Catchment Polygon Processing

Delinea las áreas de captación en formato "vector".

- Drainage Line Processing

Esta función, convierte el Stream Link en un elemento vectorial lineal en la línea de drenaje. Cada línea del nuevo elemento, está identificado con el código de la cuenca que reside.

3.2.2.2 Etapa 2. Control de calidad de datos

Se ha seleccionado estaciones meteorológicas que contengan datos de buena calidad y como máximo 20 % de información perdida o faltante.

El tratamiento de los datos climáticos considera dos fases, en la primera los datos fueron controlados de forma básica y automática, luego semiautomática a través del software rclimdex y complementada con la revisión manual de planillas y el uso modelos conceptuales meteorológicosclimáticos. La segunda fase consistió en la aplicación del software Homer para obtener las series homogenizadas de temperatura en la cual fue relevante la información de metadata, aunque esta información fue escasa. La información de metadata permitió una mejor interpretación de los datos, en la verificación de saltos o quiebres de la serie temporal climática, en la detección de errores y en la corrección de datos; también permitió discernir acerca de los sesgos no relacionados con la meteorología y el clima, es decir si los cambios en la serie temporal obedecen a factores naturales/reales o caso contrario. En consecuencia, la serie climática homogenizada fue aquella cuyas variaciones están causadas únicamente por variaciones del clima y filtró con Homer aquellas series afectadas por factores distintos al clima que inducen muchas veces a la aparición de quiebres en las series de datos climáticas locales que pueden sobre o subestimar la razón de cambio en el tiempo cuando se quiere hallar las tendencias e indicadores de extremos climáticos incorporando incertidumbre, Figura 3-3.

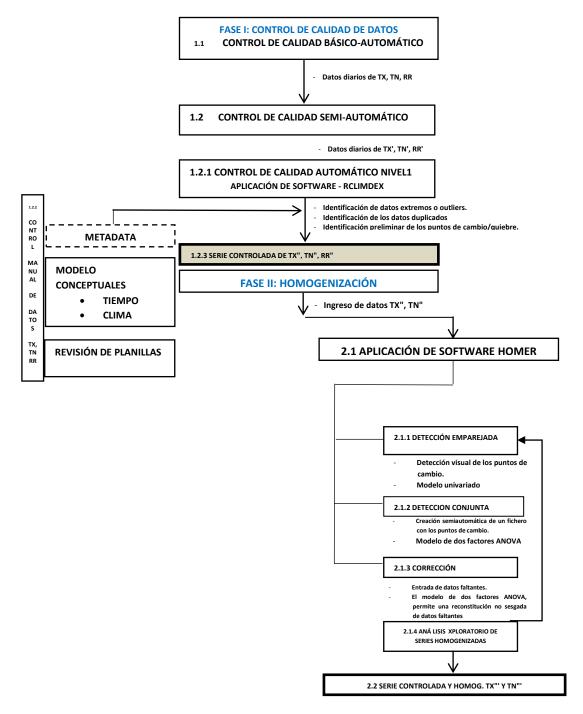


Figura 3-3 Procesos Control de Calidad de datos y homogenización de series climáticas para estudios de Variabilidad climática y Escenarios de Cambio climático en la región Arequipa. Fuente: SENAMHI-SEDAPAL/DMA-SMN, 2015. Segundo Informe Técnico de SEDAPAL. Actualizado, 2017

- Completación y extensión de datos faltantes

Para la completación y extensión de datos faltantes de escala mensual se realizaron los procedimientos siguientes:

En caso de ausencia de un dato pluviométrico mensual (n) de una estación, se utilizó como criterio estadístico de la media entre el modulo del mes n-1 y n+1. Asimismo, en el caso de ausencia de dos datos mensuales consecutivos (m y m+1) se utilizó la media ponderada dando un peso mayor al

módulo conocido es: m = (2*m-1+m+1)/3 y para el m+1 = (2*(m+2)+m)/3, siendo "n y m" la posición de la variable.

Para generar el modulo anual se ha utilizado el método de Vector Regional y regresión lineal, el primero considerado para la ausencia de 3 a 9 datos mensuales ausentes en un año y el segundo considerado para la ausencia de los 12 datos mensuales ausentes en un año, cabe mencionar que para este último se seleccionó el mejor índice de correlación.

Los valores medios mensuales se obtuvieron mediante el Método de fragmentos obtenidos de los mismos registros de la estación analizada. Los fragmentos, se obtienen generando los pesos porcentuales (k) de cada uno de los meses respecto a su valor anual, este factor k se obtiene con la siguiente ecuación:

 $\mathbf{k_i} = \frac{\overline{\mathbf{x}_i}}{\overline{\overline{X}}}$

Donde:

ki : Factor adimensional para cada mes

 $ar{xi}$: Precipitación promedio multi-anual del mes i : Precipitación promedio multi-anual a nivel anual

Consistenciada la información de precipitación se ha realizado el análisis de tendencias anuales y trimestral de la precipitación se presenta con el objetivo de identificar la existencia de comportamiento creciente, decreciente o estable en las series cronológicas de estaciones, la cual se verifica con el test estadístico de Mann-Kendall y Pendiente de Sen. Es así, que se ha escogido las estaciones con series largas que superen a los 30 años.

En el caso de temperatura del aire, no se ha completado la información faltante y dada su consistencia y su cuasi estabilidad, se concluyo su consistencia, basado en ello se ha estimado la evapotranspiración de referencia o potencial (ETP) según lo propuesto por Harvegreaves – Samani, 1985, bajo soporte GIS.

3.2.2.3 Etapa 3. Interpolación espacial y elaboración de cartografía climática

En esta etapa se aplica diferentes algoritmos de interpolación espacial para obtener los mapas climáticos multimensuales de las variables precipitación y temperatura a alta resolución espacial. La metodología consiste predecir la precipitación y temperatura del aire a partir de la relación con la elevación mediante una regresión lineal, los residuos de la regresión se interpola mediante IDW y finalmente la suma de los valores estimados tanto por regresión e interpolación de los residuales, resultan ser los mapas de precipitación y temperatura, ver Figura 3-4.

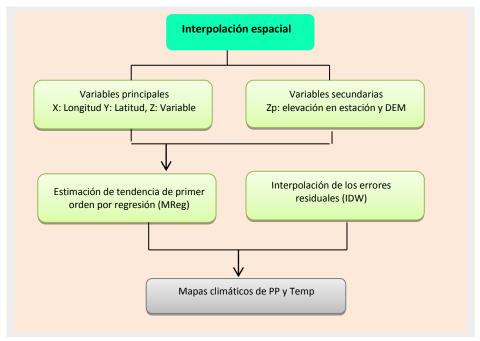


Figura 3-4 Flujograma del método de interpolación espacial Fuente: Fernadez, C. 2015 adaptado por Acuña, J. 2017

3.2.2.4 Etapa 4. Generación de caudales

En esta etapa se asimila la información climática generada en los pasos anteriores como dato de entrada para realizar el modelamiento hidrológico de cuencas. Para el presente estudio se ha seleccionado el modelo hidrológico de base física SWAT el cual ha sido calibrado en puntos de control de las estaciones Puente Ocoña (río Ocoña) y Huatiapa (río Camaná-Majes). Por otro lado este modelo tiene la capacidad de simular el balance hídrico integral del sistema hidrológico de la cuenca, visto desde una perspectiva más ecosistémica para analizar la influencia del clima futuro en los principales servicios hidrológicos de las cuencas evaluadas.

3.2.2.5 Etapa 5. Escenarios de cambio climatico

Los procesos metodológicos se detallan en el Capitulo VIII.

- Analisis de tendencia del clima medio

Para obtener la tasa de cambio de precipitación y temperatura¹ por unidad de tiempo (pendiente) se utilizó la metodología desarrollada por Sen (1968), y la significancia estadística asociada se obtuvo a través de la prueba de Mann-Kendall (Kendall, 1975), al 95% de nivel de confianza.

La tendencia lineal se estima utilizando un procedimiento no paramétrico desarrollado por Sen (1968). (Drápela & Drápelová, 2011).

$$f(t) = Qt + B \tag{1}$$

Donde, Q es la pendiente y B es la constante y se calcula con la siguiente ecuación:

$$\frac{Xj - Xk}{j - k}$$
, i=1, 2,....N, j>k (2)

Si hay n valores x_j en las series de tiempo, se obtienen estimaciones de pendientes Qi como N = n(n-1)/2. Donde la pendiente de Sen es la mediana de estos N valores de Qi:

Q=
$$\begin{cases} \frac{Q_{\frac{N+1}{2}}}{2} & \text{Si N es impar} \\ \frac{1}{2} \left(+ Q_{\frac{N+2}{2}} \right) & \text{Si N es par} \end{cases}$$
 (3)

El intervalo de confianza 100 $(1-\alpha)^{1}$ % alrededor de la pendiente de Sen es estimada con una técnica no paramétrica basada en distribución normal. Este método es válido si "N" es pequeño. El parámetro B, se obtiene despejando la ecuación original (1) de la pendiente de Sen. La mediana de los valores obtenidos, vendría a ser el B estimado. Las estimaciones para la constante B en un 99% y 95% de intervalo de confianza son calculados (Salmi, Määttä, Anttila, Ruoho-Airola, & Amnell, 2002). Se determina la tendencia de la precipitación expresada en porcentaje y la tendencia de la temperatura en °C/década y su nivel de significancia asociada, para todas las estaciones en el área de influencia del estudio.

- Tendencia de índices de extremos climáticos

Según la Organización Meteorológica Mundial (OMM), los índices de extremos climáticos son útiles para caracterizar el clima, presentar los patrones climáticos históricos y detectar los cambios producidos en el mismo. Una buena caracterización del clima requiere índices que representen la amplitud, persistencia y frecuencia de los extremos climáticos. Así, según el cuarto informe del IPCC hay una alta probabilidad de que algunos de los extremos climáticos lleguen a ser más frecuentes e intensos durante el siglo XXI (Klein Tank, Zwiers, & Zhang, 2009).

Es así que el grupo de expertos en la detección del cambio climático e índices (ETCCDI por sus siglas en inglés) ha definido un total de 27 índices de extremos climáticos relacionados a temperatura y precipitación que describen características particulares de los mismos, incluyendo frecuencia, amplitud, intensidad y persistencia. En Tabla 3-3, se muestra los índices aplicables para el área de estudio y sus definiciones.

Tabla 3-3 Índices de extremos climáticos aplicables para el área de estudio

INDICES	SIGLAS	NOMBRE	DEFINICIÓN	UNID
	FD0	Días con heladas	Conteo anual de días en los que TN (temperatura mínima diaria) <0°C	días
	TXx	Valor máximo mensual de la	Valor máximo mensual de la temperatura	ōС
		temperatura máxima diaria	máxima diaria	
	TNx	Valor máximo mensual de la	Valor máximo mensual de la temperatura	ōC
		temperatura mínima diaria	mínima diaria	
	TXn	Valor mínimo mensual de la	Valor mínimo mensual de la temperatura	ōС
		temperatura máxima diaria	máxima diaria	
	TNn	Valor mínimo mensual de la	Valor mínimo mensual de la temperatura	ōС
Temperatura		temperatura mínima diaria	mínima diaria	
	TN10p	Noches frías	Porcentaje de días en los que TN<10 ^{mo} percentil	días
	TX10p	Días fríos	Porcentaje de días en los que TX<10 ^{mo} percentil	días
	TN90p	Noches cálidas	Porcentaje de días en los que TN>90 ^{avo} percentil	días
	TX90p	Días cálidos	Porcentaje de días en los que TX>90avo	días
			percentil	
	DTR	Rango diurno de temperatura	Diferencia mensual media entre TX y TN	ōС
	SDII	Índice simple de intensidad diaria	Precipitación total anual dividida entre el número de días húmedos(definidos como PRCP>=1 mm) en un año	mm/día
Precipitación	CDD	Días secos consecutivos	Máximo número de días consecutivos con RR<1 mm	días
	CWD	Días húmedos consecutivos	Máximo número de días consecutivos con RR>=1 mm	días
	R95p	Días muy húmedos	Total anual de PRCP cuando RR>95 ^{avo} percentil	mm
	R99p	Días extremadamente húmedos	Total anual de PRCP cuando RR>99 ^{avo} percentil	mm

CAPÍTULO IV Parámetros Morfométricos

4. Determinación de parámetros morfométricos

4.1 Delimitación hidrográfica de la cuenca del río Ocoña

La cuenca del río Ocoña comprende una superficie de 16000.8 Km², que se extiende desde los 0 msnm hasta los 6445 msnm (en la cumbre del nevado Coropuna), abarca 7 provincias de las regiones de Arequipa (4), Ayacucho (2) y Apurímac (1). Recibe aportes de la cordillera del Huanzo y de altos nevados, entre los que destacan el Coropuna (6445 msnm), Solimana (6095 msnm), Sara Sara (5505 msnm) y el Firura (5500 msnm); que, entre otros, hacen de la cuenca del río Ocoña la segunda en importancia del Perú, por la magnitud de sus masas glaciares y en razón de la descarga de agua durante la época de estiaje y por el área húmeda que posee (el tamaño de la cuenca, de las áreas de nevados permanentes y lagunas). Sus límites geográficos es por el norte con la cuenca del río Caraveli, Chala, Chaparra, Atico y Yauca; por el sur con la cuenca del río Camana Majes, por el este con la cuenca del río Apurimac y por el oeste con el océano Pacifico.

En la red hidrográfica de la cuenca del río Ocoña, se distingue 3 sistemas fluviales importantes: el río Marán en la margen derecha de la cuenca, el río Cotahuasi en la margen izquierda de la cuenca y el río Ocoña propiamente dicho que se forma por la confluencia de los dos primeros. Sobre estos sistemas fluviales se ha delimitado 20 unidades hidrográficas que se presenta en la Tabla 4-1, la Figura 4-1 se observa su distribución espacial.

Tabla 4-1. Principales unidades hidrográficas delimitadas en la cuenca del río Ocoña

10010 1 2111		ca del rio Ocoña
Código	Sistema Fluvial	Unidad hidrográfica
1	Rio Maran	Sub 1 Pacapausa
2	Rio Maran	Sub 2 Intercuenca
3	Rio Maran	Sub 3 Pallancata
4	Rio Maran	Sub 4 Pacchichaca
5	Rio Cotahuasi	Sub 5 Alto Cotahuasi
6	Rio Cotahuasi	Sub 6 De Sumana
7	Rio Cotahuasi	Sub 7 Pampamarca
8	Rio Maran	Sub 8 Mirmaca
9	Rio Ocoña	Sub 9 Unidad Hidrográfica 13691
10	Rio Maran	Sub 10 Oyolo
11	Rio Maran	Sub 11 Parinacochas
12	Rio Maran	Sub 12 Maran
13	Rio Cotahuasi	Sub 13 Intercuenca Cotahuasi
14	Rio Ocoña	Sub 14 Chichas
15	Rio Ocoña	Sub 15 Churunga
16	Rio Ocoña	Sub 16 Chalhuane
17	Rio Ocoña	Sub 17 Esbilla
18	Rio Ocoña	Sub 18 Bajo Churunga
19	Rio Ocoña	Sub 19 Intercuenca Medio Bajo Ocoña
20	Rio Ocoña	Sub 20 Bajo ocoña

A continuación se describe algunos aspectos geográficos y biofísicos de las subcuencas delimitadas en Ocoña.

Figura 4-1. Unidades hidrográficas delimitadas en la cuenca del río Ocoña Fuente: Elaboración propia

a. Subcuenca Pacapausa (Sub 1)

El río Pacapausa se forma por la confluencia de los ríos Calpamayo y Pallancata, en las nacientes del río Marán. La cuenca de Pacapausa se extiende altitudinalmente desde los 2995.0 msnm hasta los 5073.0 msnm. La extensión superficial de la cuenca es de 1410.3 Km² y su territorio es dominado por cobertura vegetal tipo pajonal y matorrales. Políticamente sobre esta cuenca se ubica la capital de los distritos de Upahuacho, Pacapausa, San Francisco de Ravacayco de la provincia de Parinacochas región Ayacucho; distritos de San Javier de Alpabamba, Marcabamba, Lampa, Colta de la provincia de Paucar del Sara Sara en la región Ayacucho.

b. Intercuenca (Sub 2)

Es una intercuenca de extensión superficial de 1.9 Km² y corresponde al sistema fluvial del rio Marán. Es un área ubicada entre la subcuenca Pacchichaca y la Unidad Hidrográfica 13691, altitudinalmente se emplaza desde los 2975.0 msnm hasta los 3881.0 msnm. Esta hacia la cuenca alta del rio Ocoña.

c. Subcuenca Pallancata (Sub 3)

Nace en el departamento de Ayacucho, está ubicada en la parte alta de la cuenca del río Ocoña al NO. El río Pallancata en su recorrido suroeste confluye con el río Calpamayo para formar el río Pacapausa en el sistema hídrico del río Marán. La cuenca del río Pallancata se extiende altitudinalmente desde los 2966.0 msnm hasta los 5188.0 msnm. La extensión superficial de la cuenca es de 974.4 Km² y su territorio es dominado por cobertura vegetal tipo herbazal de tundra y en menor proporción matorrales. Políticamente sobre esta cuenca se ubica la capital del distrito de Anisos de la provincia de Parinacochas, región Ayacucho.

d. Subcuenca Pachichaca (Sub 4)

El río Pachichaca es afluente del río Calpamayo, el cual a su vez confluye aguas abajo con el río Pallancata para formar el río Pacapausa. La cuenca del río Pachichaca se extiende altitudinalmente desde los 3006.0 msnm hasta los 4611.0 msnm. La extensión superficial de la cuenca es de 220.7 Km² y su territorio es dominado por cobertura vegetal tipo pajonal.

e. Subcuenca Alto Cotahuasi (Sub 5)

Esta unidad hidrográfica constituye las nacientes del río Cotahuasi y se extiende hasta la confluencia con el río De sumana. Altitudinalmente las cotas de esta subcuenca está comprendida desde los 2996.0 msnm hasta los 5386.0 msnm. La extensión superficial de la cuenca es de 1334.0 Km² y en su territorio se desarrolla cobertura vegetal de tipo Herbazal de tundra, pajonal y bofedales. En esta subcuenca se ubica las lagunas de Huanzo y Ecma.

f. Subcuenca De Sumana (Sub 6)

El río De sumana es un afluente del río Cotahuasi por su margen izquierda y se extiende hasta su confluencia con el río Alto Cotahuasi. Altitudinalmente las cotas de esta subcuenca está comprendida desde los 3064.0 msnm hasta los 5366.0 msnm. La extensión superficial de la cuenca es de 773.3 Km² y en su territorio se desarrolla cobertura vegetal de tipo Herbazal de tundra, pajonal y bofedales. Políticamente en esta subcuenca se ubica la capital del distrito de Puyca de la provincia de la Unión, región Arequipa.

g. Subcuenca Pampamarca (Sub 7)

El río Pampamarca es un afluente del río Cotahuasi por su margen derecha y desemboca en el curso medio bajo del río Cotahuasi; altitudinalmente las cotas de esta subcuenca está comprendida desde los 2362.0 msnm hasta los 5264.0 msnm. La extensión superficial de la cuenca es de 655.1 Km² y en su territorio se desarrolla cobertura vegetal de tipo Herbazal de tundra, pajonal y matorrales. En esta subcuenca se ubica las lagunas de Huanzo y Llanajille. Políticamente se ubica la capital del distrito de Mungui de la provincia de la Unión, región Arequipa.

h. Subcuenca Mirmaca (Sub 8)

Esta unidad hidrográfica se extiende hasta la desembocadura del río Mirmaca en la intercuenca Pacapausa. La cuenca del río Mirmaca se extiende altitudinalmente desde los 1790.0 msnm hasta los 5448.0 msnm. La extensión superficial de la cuenca es de 1066.7 Km² y su territorio es dominado por cobertura vegetal del tipo pajonal y matorral. Políticamente en esta subcuenca la capital de los distritos de Incuyo de la provincia de Parinacochas región Ayacucho; Pararca, Quilcata y Pausa de la provincia de Paucar del Sara Sara en la región Ayacucho.

i. Unidad hidrográfica 13691 (Sub 9)

El río Palcamayo en su recorrido sureste confluye con el río Pallancata para formar el río Pacapausa en las nacientes de la cuenca del río Marán. La unidad hidrográfica 13691 se extiende altitudinalmente desde los 1784.0 msnm hasta los 4969.0 msnm. La extensión superficial de la cuenca es de 717.1 Km² y su territorio es dominado por cobertura vegetal tipo pajonal y en menor proporción herbazal de tundra.

j. Subcuenca Oyolo (Sub 10)

El río Oyolo en su recorrido suroeste confluye con el río Uhspamarca para formar el río Marán. La cuenca del río Oyolo se extiende altitudinalmente desde los 1556.0 msnm hasta los 5194.0 msnm. La extensión superficial de la cuenca es de 1060.5 Km² y su territorio presenta una pobre extensión de cobertura vegetal. Políticamente sobre esta cuenca se ubica la capital de los distritos de Oyolo, San José de Ushua y Corculla de la provincia de Paucar del Sara Sara en la región Ayacucho.

k. Subcuenca Parinacochas (Sub 11)

Esta unidad hidrográfica alberga la laguna de Parinacochas que ocupa la mayor parte del territorio de la subcuenca. Esta ubicado a 3 200 msnm con una extensión de 5 800 hectáreas, y al pie del volcán Sarasara, sus aguas son salobres y poco profundas. La cuenca del río Parinacochas se extiende altitudinalmente desde los 3262.0 msnm hasta los 5487.0 msnm. La extensión superficial de la

cuenca es de 556.5 Km² y su territorio es dominado por una cobertura vegetal del tipo pajonal y en menor proporción bofedales y matorrales.

I. Subcuenca Marán (Sub 12)

Esta unidad hidrográfica se extiende aguas abajo de la confluencia de los ríos Uhspamarca y Oyolo hasta la confluencia del río Marán con el río Cotahuasi en su curso inferior. La cuenca se extiende altitudinalmente desde los 909.0 msnm hasta 5467 msnm. La extensión superficial de la cuenca es de 942.5 Km² y su territorio es dominado por vegetación del tipo matorrales y en menor proporción pajonal y planicies costeras y estribaciones andinas. En esta intercuenca se ubica la capital de los distritos de Sayla y Tauria de la Provincia de la Unión de la región Arequipa.

m. Intercuenca Cotahuasi (Sub 13)

La superficie de esta unidad hidrográfica se extiende desde la confluencia de los ríos Alto Cotahuasi y De sumana, hasta la confluencia con el río Morán para formar el río Ocoña. Altitudinalmente las cotas de esta intercuenca están comprendidas entre 2996.0 msnm y 5386.0 msnm; este importante desnivel topográfico forma el imponente Canón de Cotahuasi. La superficie de esta intercuenca es de 1636.8 Km² y su territorio presenta cobertura vegetal dominante de matorrales, pajonal y cultivos pastos naturales. Políticamente sobre esta intercuenca se ubica la capital de los distritos de Alca, Tomepampa, Taurisma, Cotahuasi, Toro, Velinga y Charcana, todos de la provincia de la Unión de la región Arequipa. El río Cotahuasi durante todo el año aporta caudal al río Ocoña, el cual se origina en la confluencia de los ríos Sumana y Huarcaya, los cuales colectan todo el drenaje de las diferentes quebradas de la parte alta de la subcuenca principalmente las asociadas a la Cordillera del Huanzo. Está asociada a los humedales, como ecosistemas complejos cuyo significado permite la conservación y desarrollo integral de los recursos naturales que los conforman.

n. Subcuenca Chichas (Sub 14)

Altitudinalmente las cotas de esta intercuenca están comprendidas entre 883.0 msnm y 6389.0 msnm; la superficie de esta intercuenca es de 1585.2 Km² y su territorio presenta cobertura vegetal dominante de matorrales, pajonal y cultivos pastos naturales.

o. Subcuenca Churunga (Sub 15)

El curso principal de esta subcuenca confluye en el río Chalhuane para formar el río Bajo Churunga, el cual a su vez desemboca en la intercuenca Medio Bajo Ocoña por su margen izquierda. La cuenca se extiende altitudinalmente desde los 851.0 msnm hasta 6390.0 msnm. La extensión superficial de la cuenca es de 355.6 Km² y sobre su territorio se extiende vegetación del tipo matorrales, Pajonal, herbazal de Tundra, predominantemente. La zona extrema más alta de esta subcuenca alberga una pequeña superficie del nevado Coropuna. En esta unidad se ubican la capital de los distritos de Yanaquihua y Andaray de la provincia de Condesuyos.

p. Subcuenca Chalhuane (Sub 16)

El curso principal de esta subcuenca confluye en el río Churunga para formar el río Bajo Churunga, el cual a su vez desemboca en la intercuenca Medio Bajo Ocoña por su margen izquierda. La cuenca se extiende altitudinalmente desde los 853.0 msnm hasta 4797.0 msnm. La extensión superficial de la cuenca es de 339.0 Km² y sobre su territorio se extiende vegetación del tipo matorrales, Pajonal, predominantemente.

q. Subcuenca Esbilla (Sub 17)

El curso principal de esta subcuenca desemboca en el río Bajo Churunga el cual drena hacia la intercuenca Medio Bajo Ocoña por su margen izquierda. La cuenca se extiende altitudinalmente desde los 699.0 msnm hasta 3516 msnm. La extensión superficial de la cuenca es de 254.5 Km² y su territorio es dominado por planicies costeras y estribaciones andinas.

r. Intercuenca Bajo Churunga (Sub 18)

Esta unidad hidrográfica se extiende desde la confluencia de los ríos Churunga y Chalhuane hasta su desembocadura en el curso de la intercuenca Medio Bajo Ocoña. La cuenca se extiende altitudinalmente desde los 462.0 msnm hasta 2371.0 msnm. La extensión superficial de la cuenca es de 116.5 Km² y su territorio se caracteriza por presentar planicies costeras y estribaciones andinas.

s. Intercuenca Medio Bajo Ocoña (Sub 19)

La delimitación de está subcuenca corresponde al curso medio inferior del río Ocoña hasta su confluencia con el río Churunga. La cuenca se extiende altitudinalmente desde los 384.0 msnm hasta 4519.0 msnm. La extensión superficial de la cuenca es de 1216.2 Km² y sobre su territorio se extiende el valle agrícola de Ocoña. En esta unidad se ubican la capital del distrito de Iquipi de la provincia de Condesuyos.

t. Subcuenca Bajo Ocoña (Sub 20)

La delimitación de está subcuenca corresponde al curso inferior del río Ocoña hasta su desembocadura en el Pacífico. La cuenca se extiende altitudinalmente desde el nivel del mar hasta 2476.0 msnm. La extensión superficial de la cuenca es de 786.5 Km² y sobre su territorio se extiende el valle agrícola de Ocoña. En esta unidad se ubican las capitales de los distritos de Ocoña y Urasqui de la provincia de Camaná. La configuración topográfica es plana y es una zona calificada como humedad y angosta donde es favorable la presencia de cultivos de arroz y frijol principalmente, el río presenta condiciones de producción de camarones.

En la Tabla 4-2 se muestra los principales parámetros morfometricos para la cuenca del Ocoña.

Tabla 4-2 Parametros morfometricos de la cuenca del rio Ocoña

PARAMETROS MORF	OMETRICOS DE	LAS UNIDADES	HIDROGRÁFICAS	DE LA CUENC	AO OCOÑA	
Unidad Hidrográfica	Area (km2)	Perimetro (km)	Coeficiente compacidad (kc)	Altura Media (msnm)	Longitud Del rio (km)	Pendiente Del rio (%)
Sub 1 Pacapausa	1410.3	261.1	1.9	4295	56.4	2.3
Sub 2 Intercuenca	1.9	10.2	2.0	3312	1.3	5.4
Sub 3 Pallancata	974.4	255.4	2.3	4483	72.1	2.7
Sub 4 Pacchichaca	220.7	103.4	1.9	4088	32.8	4.0
Sub 5 Alto Cotahuasi	1334.0	250.2	1.9	4794	61.7	2.8
Sub 6 De Sumana	773.3	235.5	2.4	4763	61.9	3.4
Sub 7 Pampamarca	655.1	185.0	2.0	4574	54.0	4.6
Sub 8 Mirmaca	1066.7	220.8	1.9	3811	77.3	3.6
Sub 9 Unidad Hidrográfica 13691	717.1	173.8	1.8	3820	51.6	2.5
Sub 10 Oyolo	1057.8	238.3	2.1	4400	66.7	4.8
Sub 11 Parinacochas	556.5	157.8	1.9	3544	20.8	0.0
Sub 12 Maran	942.5	182.4	1.7	3042	45.2	1.4
Sub 13 Intercuenca Cotahuasi	1636.8	332.7	2.3	3786	90.1	1.4
Sub 14 Chichas	1585.2	302.3	2.1	4316	89.0	4.5
Sub 15 Churunga	355.6	187.6	2.8	3516	56.9	7.3
Sub 16 Chalhuane	339.0	176.6	2.7	2818	61.5	6.3
Sub 17 Esbilla	254.5	126.4	2.2	1824	39.2	6.7
Sub 18 Bajo Churunga	116.5	81.6	2.1	1291	14.1	2.8
Sub 19 Intercuenca Medio Bajo Ocoña	1216.2	249.4	2.0	2042	59.0	0.9
Sub 20 Bajo ocoña	786.5 16000.8	203.9	2.0	1321	58.4	0.7

4.2 Delimitación hidrográfica de la cuenca del río Camana

La cuenca Camaná, políticamente, forma parte de las provincias de Camaná, Castilla, Cailloma y Condesuyos, del departamento de Arequipa, y cubre en total una extensión de 17 152.8 km². Geográficamente, la cuenca del río Camaná Majes limita por el norte, con las cuencas de los ríos Apurimac y Ocoña; por el sur, con la cuenca del río Quilca y el Océano Pacifico por el Este, con las cuencas de los ríos Tambo y Apurímac y, por el oeste, con la cuenca del río Ocoña. Sus puntos extremos se hallan comprendidos entre los paralelos 14°56′ y 16°43′ de latitud sur y los meridianos 70°53′ y 73°06′ de longitud oeste de Greenwich. Altitudinalmente, se extiende desde el nivel del mar hasta la cumbre de la cordillera occidental de los Andes, que constituye la divisoria de las aguas entre la cuenca Camana y cuenca Apurímac. En la red hidrográfica de la cuenca del río Camana, se tiene un rio principal del mismo nombre, sobre ello se ha delimitado 27 unidades hidrográficas que se presenta en la Tabla 4-3, y en la Figura 4-2 se observa su distribución espacial.

Tabla 4-3. Principales unidades hidrográficas delimitadas en la cuenca del río Camana-Majes

Unidades Hidrográficas delimitadas en la cuenca del río Camana-Majes Unidades Hidrográficas en cuenca Camaná-Majes				
Código	Sistema Fluvial	Unidad Hidrogáfica		
1	Rio Camana	Sub 1 Intercuenca Bajo Camana		
2	Rio Camana	Sub 2 Molles		
3	Rio Camana	Sub 3 Puluvinas		
4	Rio Camana	Sub 4		
5	Rio Camana	Sub 5		
6	Rio Camana	Sub 6		
7	Rio Camana	Sub 7 Ayo		
8	Rio Camana	Sub 8		
9	Rio Camana	Sub 9		
10	Rio Camana	Sub 10 Capiza		
11	Rio Camana	Sub 11 Intercuenca Colca Camana		
12	Rio Camana	Sub 12		
13	Rio Camana	Sub 13 Llapa		
14	Rio Camana	Sub 14		
15	Rio Camana	Sub 15 Medio colca		
16	Rio Camana	Sub 16		
17	Rio Camana	Sub 17 Negrillo		
18	Rio Camana	Sub 18		
19	Rio Camana	Sub 19 Intercuenca Medio Alto Colca		
20	Rio Camana	Sub 20 El Pañe Negrillo		
21	Rio Camana	Sub 21 Condoroma		
22	Rio Camana	Sub 22		
23	Rio Camana	Sub 23 Maquerullo		
24	Rio Camana	Sub 24 Chalhuanca		
25	Rio Camana	Sub 25 Molloco		
26	Rio Camana	sub 26 Andahua		
27	Rio Camana	Sub 27		

Figura 4-2. Unidades hidrográficas delimitadas en la cuenca Camaná-Majes Fuente: elaboración propia

A continuación se describe algunos aspectos geográficos y biofísicos de las subcuencas delimitadas en Camana.

a. Intercuenca Bajo Camana (Sub 1)

El límite de esta unidad hidrográfica se extiende desde el punto de cierre de la intercuenca Medio Bajo Camaná hasta la desembocadura en el Oceáno Pacífico. El área de drenaje de esta intercuenca es de 593.2 Km² con un rango altitudinal comprendido entre 2.0 msnm y 2134.0 msnm. La cobertura vegetal dominante es cultivos agrícolas. Sobre esta subcuenca se ubica la capital de los distritos de Corire y San Gregorio de las provincias de Castilla y Camaná, respectivamente. La intercuenca está ubicada en la zona inferior de la cuenca rio Camaná, en su superficie alberga al valle Majes de características desérticas, sus suelos son de relieve moderado en el que destacan las terrazas marianas, los abanicos aluviales, las dunas y los depósitos de anta eólica.

b. Subcuenca Molles (Sub 2)

El límite de esta unidad hidrográfica se extiende hasta la confluencia del río Molles con el río Camaná, por su margen izquierda, en el tramo de la intercuenca Bajo Camaná. El área de drenaje de esta subcuenca es de 1465.0 Km2 con un rango altitudinal comprendido entre 183.0 msnm y msnm 4644.0 msnm. La cobertura vegetal dominante en la parte baja es cultivos agrícolas y herbazal de tundra en la parte alta de la cuenca.

c. Subcuenca Paluviñas (Sub 3)

El límite de esta unidad hidrográfica se extiende hasta la confluencia del río Paluviñas con el río Camaná, por su margen derecha, en el tramo de la intercuenca Bajo Camaná. El área de drenaje de esta subcuenca es de 840.0 Km² con un rango altitudinal comprendido entre 135.0 msnm y msnm 3762.0 msnm. La cobertura vegetal dominante en la parte baja es cultivos agrícolas.

d. Subcuenca 4

El área de drenaje de esta subcuenca es de 4.6 Km2 con un rango altitudinal comprendido entre 4436.0 msnm y msnm 4570.0 msnm. Aquí se emplaza la Presa Dique Los Españoles de una capacidad de 12 MMC (millones de metros cúbicos) a 4,440 m.s.n.m. Convertida en una presa para la generación de energía hidroeléctrica, conformada por humdales que son vitales para la conservación de la diversidad biológica y fuentes de agua y productividad primaria de las que innumerables especies vegetales y animales dependen para subsistir.

e. Subcuenca 5

El área de drenaje de esta subcuenca es de 60.5 Km2 con un rango altitudinal comprendido entre 4441.0 msnm y msnm 4913.0 msnm, ubicado al nor este y parte alta de la cuenca del Camana, esta ubicadao entre la subcuenca 4 y 6.

f. Subcuenca 6

El área de drenaje de esta subcuenca es de 60.5 Km2 con un rango altitudinal comprendido entre 4441.0 msnm y msnm 4913.0 msnm.

g. Subcuenca Ayo (Sub 7)

Esta subcuenca, desemboca al rio Colca por su margen izquierdo, tiene una extensión superficial de 157.7 Km² con un rango altitudinal comprendido entre 1341.0 msnm y msnm 5176.0 msnm.

h. Subcuenca 8

El área de drenaje de esta subcuenca es de 468.4 Km2 con un rango altitudinal comprendido entre 582.0 msnm y msnm 6287.0 msnm. Los afluenes más importantes son el rio Anchapara, Blanquillos y todos convergen hacia el rio Suraje.

i. Subcuenca 9

El área de drenaje de esta subcuenca es de 1052.2 Km2 con un rango altitudinal comprendido entre 4311.0 msnm y msnm 5054.0 msnm. Los afluentes son el Rio Blanco que luego pasa a nominarse Rio grande y con este nombre desemboca al rio Majes.

j. Subcuenca Capiza (Sub 10)

El límite de esta unidad hidrográfica se extiende hasta la confluencia del río Capiza con el río Colca en el tramo de intercuenca Colca-Camaná. El área de drenaje de esta subcuenca es de 837.3 Km² con un rango altitudinal comprendido entre 902.0 msnm y msnm 6400.0 msnm. La cobertura vegetal dominante es matorral. El principal cuerpo de agua que se ubica parcialmente en esta subcuenca lo constituye el nevado Coropuna. En esta subcuenca se ubica la capital de los distritos de Pampacolca, Machaguay, Viraco, Tipan y Unón de la provincia de Castilla.

k. Intercuenca Colca-Camaná (Sub 11)

El límite de esta unidad hidrográfica se extiende desde el punto de confluencia del río Molloco con el río Colca hasta la confluencia de éste con el río Capiza. En este tramo del río Colca el área de recepción de la intercuenca es de 1568.0 Km² con un rango altitudinal comprendido entre 898.0 msnm y msnm 5652.0 msnm. La cobertura vegetal dominante es matorral. En esta subcuenca se ubican la capital de los distritos de Chocos y Huambo de las provincias de Castilla y Caylloma.

I. Subcuenca 12

El área de drenaje de esta subcuenca es de 171.1 Km2 con un rango altitudinal comprendido entre 4207.0 msnm y msnm 4975.0 msnm. El curso principal es parte del rio Colca.

m. Subcuenca Llapa (Sub 13)

El límite de esta subcuenca se extiende hasta la desembocadura del río Llapa en el río Colca. El área de drenaje de esta subcuenca es de 548.6 Km² y la altitud se encuentra en el rango de 3809.0 msnm y 5329.0 msnm. El principal cuerpo de agua en esta subcuenca es la laguna Mamacocha que da origen al río Llapa. La vegetación predominante es pajonal y en menor grado herbazal de tundra. En esta subcuenca se ubica la capital del distrito de Callalli de la provincia de Caylloma-Arequipa.

n. Subcuenca 14

El área de drenaje de esta subcuenca es de 45.4 Km2 con un rango altitudinal comprendido entre 4206.0 msnm y msnm 4928.0 msnm.

o. Subcuenca Medio Colca (Sub 15)

El límite superior de esta subcuenca se extiende desde el punto de confluencia del río Llapa con el río Colca hasta la confluencia de éste con el río Molloco. El área de drenaje en este tramo del río Colca es de 1620.8 Km² con un rango altitudinal comprendido entre 2105.0 msnm y 5983.0 msnm., este gena desnivel topográfico es lo que ha formado el Gran Cañón del río Colca. La cobertura vegetal predominante es matorral y pajonal. En esta subcuenca se ubica las capitales de los distritos de Tuti, Chicay, Coporaque, Yanque, Ichupampa, Achoma, Maca, Lari, Madrigal, Tapai, Cabanaconde de la provincia de Caylloma-Arequipa.

p. Subcuenca 16

El área de drenaje de esta subcuenca es de 154.0 Km2 con un rango altitudinal comprendido entre 4189.0 msnm y msnm 4971.0 msnm. Aalberga a la represa Condoroma Situada a gran altitud, entre Arequipa y Cusco, es la quinta más grande del país. Posee un muro de contención de 100 metros de altura, que le permite tener una capacidad de almacenamiento de 285 millones de metros cúbicos, a esta represa desemboca el rio del mismo nombre, rio Paranca y rio Colca.

q. Subcuenca Negrillo (Sub 17)

La cuenca se extiende altitudinalmente se emplaza entre los 4319.0 msnm y 5180.0 msnm, siendo su extensión superficial de 450.0 Km², con predominancia de tierras sin vegetación.

r. Subcuenca 18

El área de drenaje de esta subcuenca es de 216.0 Km2 con un rango altitudinal comprendido entre 4022.0 msnm y msnm 5098.0 msnm. El rio Colca es rio principal, tiene como afluente al rio Llaullacho

s. Intercuenca Medio Alto Colca (Sub 19)

El límite superior de esta unidad hidrográfica se ubica en el punto de confluencia del río Moquerullo con el río Colca, siendo el límite inferior el punto de confluencia del río llapa con el río Colca. El área total de este tramo del río Colca es de 400.5 Km² con una variación altitudinal comprendida entre 3808.0 msnm y 5187.0 msnm. La vegetación predominante es pajonal y herbazal de tundra. En esta subcuenca se ubica la capital de los distritos de Sibayo y Tisco de la provincia de Caylloma de la región Arequipa.

t. Subcuenca Pañe Negrillo (Sub 20)

El límite de esta subcuenca está comprendido hasta la desembocadura del río Negrillo en el río Colca. La cuenca se extiende altitudinalmente entre los 4584.0 msnm y 5214.0 msnm, siendo su extensión superficial de 196.2 Km². Sobre el territorio predomina una cobertura vegetal de Pajonal, Bofedal, Herbazal de Puna. Se ubican en esta subcuenca lagunas como Pañi, Piscococha y Blanca.

u. Subcuenca Condoroma (Sub 21)

El límite de esta unidad hidrográfica está comprendido a partir de la confluencia del río Negrillo con el río Colca, hasta la confluencia de éste con el río Maquerullo. La intercuenca se extiende altitudinalmente entre los 4222.0 msnm y 5241.0 msnm, siendo su extensión superficial de 223.9 Km2. Sobre el territorio predomina una cobertura vegetal de Pajonal, Bofedal, Herbazal de Puna y se ubican lagunas como Chosecami, Samojata y Ajoyani. Sobre esta intercuenca se ubica la represa de Condoroma, en el distrito del mismo nombre, en la provincia de Espinar región Cusco.

v. Subcuenca 22

El área de drenaje de esta subcuenca es de 88.5 Km2 con un rango altitudinal comprendido entre 3950.0 msnm y msnm 4765.0 msnm. El rio Colca es el principal de la subcuenca.

w. Subcuenca Maquerullo (Sub 23)

El límite de esta subcuenca se extiende hasta la confluencia del río Maquerullo con el río Colca. Altitudinalmente esta subcuenca está comprendida entre los 4029.0 msnm y 5108.0 msnm, siendo su extensión total de 367.2 Km², la vegetación predominante en su superficie Pajonal, Bofedal y Herbazal de Puna. Se destaca la presencia de Lagunas como Paracota y Laquecota.

x. Subcuenca Chalhualca (Sub 24)

Esta subcuenca ubicada en el extremo norte de la cuenca del río Camaná-majes, se extiende hasta el punto de confluencia del río Chalhuanca con el río Colca, donde éste último cambia de dirección noreste a suroeste. El área de la cuenca es de 469.8 Km² con una variación altitudinal comprendida entre 3950.0 msnm y 5080.0 msnm, siendo la vegetación predominante herbazal de Tundra y Bofedales. Presenta una Presa ubicada en el río Chalhuanca, provincia de Caylloma, distrito de Yanque a 4.292 msnm, que permite derivar el agua almacenada a la cuenca del río Caquemayo y posteriormente al río Sumbay, incorporando plenamente al sistema regulado del Chili un metro cúbico y medio de líquido.

y. Subcuenca Molloco (Sub 25)

El límite de esta subcuenca se extiende hasta la desembocadura del río Molloco en el curso medio del río Colca. El área de drenaje es de 1578.1 Km2 con un rango altitudinal comprendido entre 2115.0 msnm y 5594.0 msnm. La cobertura vegetal predominante es herbazal de tundra. Se ubica en esta subcuencas lagunas como Parihuanas, Asoca, Llayhua, Almilla, Llococha, Laroca.

z. Subcuenca Andahua (Sub 26)

El límite de esta unidad hidrográfica se extiende hasta la confluencia del río Andagua con el río Colca en el tramo de intercuenca Colca-Camaná. El área de drenaje de esta subcuenca es de 2666.7 Km² con un rango altitudinal comprendido entre 1365.0 msnm y msnm 5586.0 msnm. La cobertura vegetal dominante es pajonal y herbazal de tundra. Se ubica lagunas como Corococha y Chachas. En esta subcuenca se ubica la capital de los distritos de Orcopampa, Chilcaymarca Andagua y Ayo de la provincia de Castilla.

z1. Subcuenca 27

El área de drenaje de esta subcuenca es de 690.3 Km2 con un rango altitudinal comprendido entre 424.0 msnm y msnm 4489.0 msnm. Los Quebradas Sicera y Huacan desembocan por su margen dereche al rio Camana.

En la Tabla 4-4 se muestra los principales parámetros morfometricos calculados para cada subcuenca que conforma la cuenca del Camana.

Tabla 4-4 Parametros morfometricos de las subcuencas que conforman la cuenca del Camana

PARAMETROS MORFOMETRICOS DE LAS UNIDADES HIDROGRÁFICAS DE LA CUENCA CAMANA						
Unidad Hidrográfica	Area (km2)	Perimetro (km)	Coeficiente compacidad (kc)	Altura Media (msnm)	Longitud Del rio (km)	Pendiente Del rio (%)
Sub 1 Intercuenca Bajo Camana	593.2	211.2	2.4	843	69.6	0.6
Sub 2 Molles	1465.0	244.7	1.8	1640	77.2	3.8
Sub 3 Puluvinas	840.0	177.1	1.7	1580	73.3	4.5
Sub 4	4.6	16.2	2.1	4454	3.1	0.10
Sub 5	60.5	43.6	1.6	4566	10.9	3.0
Sub 6	217.8	103.6	2.0	4525	24.5	1.4
Sub 7 Ayo	157.7	63.2	1.4	3296	18.0	11.3
Sub 8	468.4	140.9	1.8	4577	42.4	0.3
Sub 9	1052.2	204.2	1.8	2448	48.6	8.5
Sub 10 Capiza	837.3	131.0	1.3	3735	39.8	10.0
Sub 11 Intercuenca Colca Camana	1568.0	219.4	1.6	3447	76.0	1.6
Sub 12	171.1	64.9	1.4	4528	22.0	0.5
Sub 13 Llapa	549.7	138.3	1.7	4430	36.3	3.0
Sub 14	45.4	42.6	1.8	4552	9.8	4.5
Sub 15 Medio colca	1620.8	205.6	1.4	4363	85.1	2.0
Sub 16	154.0	107.5	2.4	4458	11830.1	0.0
Sub 17 Negrillo	450.0	141.8	1.9	4623	44.9	2.0
Sub 18	216.0	82.4	1.6	4502	17.0	1.2
Sub 19 Intercuenca Medio Alto Colca	400.5	95.5	1.3	4403	4.3	0.5
Sub 20 El Pañe Negrillo	196.2	83.2	1.7	4792	19.7	3.4
Sub 21 Condoroma	223.9	96.2	1.8	4568	3.7	2.9
Sub 22	88.5	48.9	1.5	4343	2.0	0.4
Sub 23 Maquerullo	367.2	105.2	1.5	4600	38.7	1.7
Sub 24 Chalhuanca	469.8	106.5	1.4	4460	37.2	2.2
Sub 25 Molloco	1578.1	233.3	1.6	4731	80.4	3.3
sub 26 Andahua	2666.7	299.3	1.6	4433	189.1	1.8
Sub 27	690.3 17152.8	145.2	1.5	1758	44.3	8.3

4.3 Conclusiones

En la cuenca del río Ocoña, se han delimitado 20 subcuencas, el de mayor extensión superficial es la Intercuenca Cotahuasi con 1636.8 km2 y la menor extensión es la subcuenca 2 (Intercuenca) con 1.9 km2.

El coeficiente de compacidad de las subcuencas varian de 1.7 a 2.8 caracterizandole como subcuencas de forma alargada. La altura media media de las subcuencas varian de 1291 a 4794 msnm correspondientes a Bajo Churunga y Alto Cotahuasi.

En la cuenca del río Camana, se han delimitado 27 subcuencas, el de mayor extensión superficial es la Subcuenca Andahua con 2666.7 km² y la menor extensión es la subcuenca 4 con 4.6 km².

El coeficiente de compacidad de las subcuencas varian de 1.3 a 2.4 caracterizandole como subcuencas de forma alargada y concentricas. La altura media media de las subcuencas varian de 843 a 4792 msnm correspondientes a subcuenca 1 (intercuenca) y la subcuenca El Pañe Negrillo (subcuenca 20).

CAPÍTULO V

Caracterizacion climática y de la oferta hídrica presente de las cuencas de los ríos Ocoña y Camaná Majes

5. Caracterización climática

Basados en los datos climáticos de precipitación y temperatura del aire correspondiente al período 1981-2010 se ha logrado determinar el comportamiento espacio temporal de las variables precipitación, temperatura máxima, temperatura mínima, evapotranspiración de referencia y el balance hídricos superficial a nivel de la cuenca integral y subcuencas principales delimitadas en el ámbito territorial de las cuencas Ocoña y Camana Majes.

5.1 Climatología de la Precipitación en la cuenca del río Ocoña

La precipitación media anual para toda la cuenca alcanza valores de 455.6 mm, la cual se distribuye mensualmente según detalle que se presenta en la Tabla 5-1 y Figura 5-1. Respecto a las precipitaciones estacionales el 65% de la precipitación anual se concentra en el trimestre DEF (diciembre, enero y febrero), mientras que en el trimestre más seco JJA (junio, julio y agosto), la precipitación acumulada representa el 7%. Los valores acumulados de las precipitaciones del trimestre MAM y SON alcanza 399.8 mm y 32.0 mm respectivamente. El mes más lluvioso es febrero y el más seco junio.

Tabla 5-1 Parámetros estadísticos de la precipitación de la cuenca Ocoña

Parámetro			PARAI	METROS	ESTADIS	STICOS I	DE LA PR	ECIPIT/	ACION -	CUENC	А ОСО	ÑA	
Parametro	Set	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Promedio	6.4	9.7	15.9	49.5	109.8	134.2	93.3	23.4	3.4	2.7	3.0	4.3	455.6
Mediana	2.3	4.9	10.9	44.7	101.1	130.1	80.5	20.7	2.1	0.6	0.3	1.7	399.8
DS	8.8	11.6	17.4	32.4	59.1	75.5	49.3	15.9	3.3	5.6	7.0	9.1	158.3
CV	1.4	1.2	1.1	0.7	0.5	0.6	0.5	0.7	1.0	2.1	2.3	2.1	0.3
máx	33.7	49.8	83.3	129.1	240.4	295.7	225.9	69.3	12.9	29.0	36.9	52.9	777.7
Min	0.0	0.5	0.6	2.1	7.3	9.9	4.9	1.4	0.0	0.0	0.0	0.2	80.7

Figura 5-1 Climatología de la Precipitación mensual en la cuenca Ocoña

El comportamiento de la precipitación anual en la cuenca del rio Ocoña varía de 0 en la desembocadura con el Océano Pacifico a 905 mm hacia la divisoria de cuenca, el promedio multianual de las precipitaciones presenta valores que superan los 700 mm año-1 en el sector oriental que comprende las partes altas de las provincias Parincochas y la Union. En la región centro-occidental de la cuenca, las precipitaciones son del orden del 400-700 mm año-1, tal como se ilustra en la Figura 5-2.

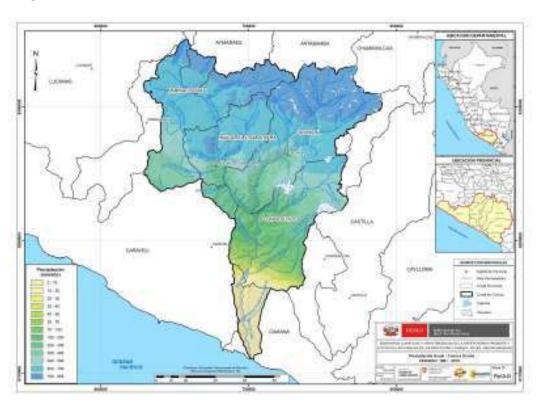


Figura 5-2 Variación espacial de la precipitación anual en la cuenca Ocoña

En años excepcionalmente húmedos (1998-99) la precipitación anual alcanza valores de hasta 778.0 mm, mientras que en años extremadamente secos (1991-92) la precipitación anual se reduce hasta 81.0 mm. Durante Eventos El Niño la precipitación es deficitaria, mientras que en Eventos La Niña, la precipitación excede sus valores normales.

El análisis a nivel de subcuencas ha permitido identificar que la subcuenca del Alto Cotahuasi presenta la mayor precipitación anual con 795.5 mm; en el lado opuesto la menor precipitación anual se da en la Intercuenca del Bajo Ocoña, con apenas 2.5 mm, tal como se presenta en la Tabla 5-2 y Figura 5-3.

En la subcuenca Alto Cotahuasi, en años excepcionalmente húmedos (2011-12), la precipitación anual alcanza los 1319.0 mm, mientras que en años extremadamente secos (1991-92), la precipitación anual disminuye hasta 168.7 mm. El comportamiento de la precipitación en esta subcuenca durante la ocurrencia de Eventos El Niño está asociado a déficit pluviométrico, mientras que Eventos La Niña está asociado a excesos pluviométricos.

En la intercuenca Bajo Ocoña, en años excepcionalmente húmedos (2011-12), la precipitación anual alcanza los 4.3 mm, mientras que en años extremadamente secos (1991-92) la precipitación anual baja hasta 0.5 mm.

Tabla 5-2 Climatología de la precipitación en unidades hidrográficas de la cuenca Ocoña

CLIMATOLO	OGIA E	DE LA	PREC	IPITA	CION	MENS	SUAL	/ ANL	JAL (n	ım)			
Unidad Hidrográfica	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Sub 1 Pacapausa	8.1	15.7	24.4	69.6	160.0	184.2	143.0	36.0	5.3	5.5	3.3	6.9	662.0
Sub 2 Intercuenca	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4	77.0
Sub 3 Pallancata	10.6	18.9	29.0	77.6	174.4	198.9	156.5	41.6	5.2	6.3	4.2	9.5	732.8
Sub 4 Pacchichaca	8.2	17.3	25.8	66.0	142.8	161.0	124.7	32.8	4.6	6.5	2.8	6.3	598.7
Sub 5 Alto Cotahuasi	14.2	21.8	31.5	84.1	188.6	201.9	171.9	50.7	7.3	5.0	5.4	13.0	795.5
Sub 6 De Sumana	11.3	16.3	27.7	77.3	167.4	186.1	152.1	41.6	5.2	3.7	4.6	8.9	702.2
Sub 7 Pampamarca	9.4	14.7	23.2	65.8	158.4	184.1	144.9	37.3	4.7	4.3	3.9	9.2	660.0
Sub 8 Mirmaca	6.6	13.7	19.9	52.8	116.4	130.9	99.6	25.8	4.3	6.8	2.4	4.9	484.2
Sub 9 Unidad Hidrográfica 13691	11.4	26.5	38.8	81.8	150.2	155.2	123.8	40.1	5.3	7.9	2.7	7.6	651.2
Sub 10 Oyolo	8.5	16.7	25.7	66.0	146.3	169.1	128.5	33.6	4.0	6.8	3.2	7.4	615.8
Sub 11 Parinacochas	5.5	7.7	12.6	33.5	81.7	89.7	70.0	15.5	4.8	5.5	2.6	3.3	332.5
Sub 12 Marán	2.8	5.3	7.8	27.4	68.4	84.7	61.9	13.2	1.7	5.9	1.7	3.1	283.9
Sub 13 Intercuecna Cotahuasi	4.6	7.3	12.9	40.8	106.0	134.3	96.4	20.5	2.1	2.7	2.4	5.0	434.9
Sub 14 Chichas	4.0	5.3	10.3	36.0	97.1	126.7	78.7	15.6	2.0	2.0	2.6	4.0	384.2
Sub 15 Churunga	1.4	1.9	4.2	16.1	52.5	72.6	39.1	5.3	0.7	0.8	1.4	2.1	198.2
Sub 16 Chalhuane	0.8	1.0	2.3	9.0	31.7	43.8	23.2	2.9	0.4	0.4	0.9	1.2	117.8
Sub 17 Esbila	0.4	0.3	0.8	2.4	8.5	11.6	6.3	0.8	0.2	0.2	0.5	0.3	32.2
Sub 18 Bajo Churunga	0.3	0.2	0.7	1.8	5.9	7.9	4.9	0.6	0.1	0.2	0.3	0.3	23.1
Sub 19 Intercuenca Medio Bajo Ocoña	0.7	1.0	2.0	7.9	25.0	34.6	22.1	2.8	0.4	0.6	0.7	1.0	98.8
Sub 20 Bajo Ocoña	0.1	0.0	0.1	0.2	0.6	0.7	0.5	0.1	0.0	0.0	0.1	0.0	2.5

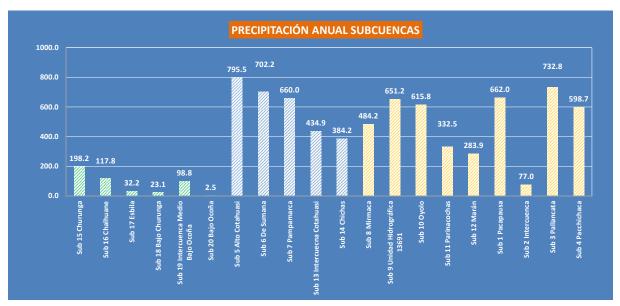


Figura 5-3 Precipitación anual en unidades hidrográficas. En barras color verde el sistema del río Ocoña, en azul el sistema de Cotahuasi y en amarillo el sistema del rio Cotahuasi

En el comportamiento decadal de la precipitación media de la cuenca Ocoña, se ha determinado fluctuaciones en los acumulados de la precipitación anual, así tenemos que la década de 2001-2010 se ha caracterizado por ser el período de menor pluviometría de todo el período analizado con un promedio multianual de 422.0 mm; por otro lado la década 1991-2000 es la más húmeda con una precipitación promedio de 520.0 mm. Para el período 2011-2016 se ha observado una precipitación promedio anual de 427.0 mm en 8% inferior a su normal climática (460 mm), tal como se ilustra en la Figura 5-4.



Figura 5-4 Precipitación media mensual y multianual por década en la cuenca Ocoña

En general, las precipitaciones en la cuenca Ocoña, a escala espacio — mensual, se inician en setiembre llegando hasta 19 mm en el sector noreste de la cuenca alta; progresivamente las precipitaciones se incrementan entre enero y febrero de Oeste-Este ocurriendo las mayores precipitaciones en las zonas altas acumulando 214 y 237 mm, respectivamente; para descender entre marzo y abril acumulando 190 y 59 mm, respectivamente. De mayo a agosto es la época seca en toda la región, las precipitaciones son nulas a escasas acumulando las mayores precipitaciones de 17 mm al noreste de la cuenca en las zonas altas, Mapas (Pp 01 - O al Pp 12 - O).

5.2 Climatología de la Precipitación en la cuenca del río Camaná Majes

La precipitación media anual para toda la cuenca es 404.9 mm para el período 1981-2010, la cual se distribuye mensualmente según detalle que se presenta en la Tabla 5-3 y Figura 5-5. El 63% de la precipitación anual se concentra en el trimestre DEF (diciembre, enero y febrero), mientras que en el trimestre más seco JJA (junio, julio y agosto), la precipitación acumulada representa el 2%. Los valores acumulados de las precipitaciones del trimestre MAM y SON alcanza 105.2 mm y 36.0 mm respectivamente. El mes más lluvioso es febrero y el más seco es junio.

Tabla 5-3 Parámetros estadísticos de la precipitación de la cuenca Camaná-Majes

Parámetro				PARAI	IETROS	ESTADI	STICOS	DE LA F	PRECIP	ITACIO	N		
raiailletio	Set	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Promedio	6.2	10.9	18.9	47.1	100.0	107.0	78.5	23.0	3.7	2.6	2.7	4.2	404.9
Mediana	3.7	6.5	12.6	50.4	95.2	114.1	73.5	20.2	3.5	0.8	0.9	1.9	383.2
DS	7.9	11.3	17.9	22.3	43.4	54.2	37.5	13.3	2.7	5.1	5.8	5.8	112.6
CV	1.3	1.0	0.9	0.5	0.4	0.5	0.5	0.6	0.7	2.0	2.2	1.4	0.3
máx	38.7	40.5	74.3	92.9	179.8	206.5	163.4	51.9	9.3	22.1	29.3	28.0	612.7
Min	0.1	1.0	1.6	4.3	15.3	24.6	9.6	2.6	0.0	0.0	0.0	0.3	145.1

Figura 5-5 Climatología de la Precipitación mensual en la cuenca Camaná-Majes

El comportamiento de la precipitación anual en la cuenca del rio Camana varía de 0 en la desembocadura con el Océano Pacifico a 970 mm hacia la divisoria de cuenca, el promedio multianual de las precipitaciones presenta valores que superan los 700 mm año-1 en el sector oriental que comprende las partes altas de las provincias Castilla y Caylloma. En la región centro-occidental de la cuenca, las precipitaciones son del orden del 400-700 mm año-1, del centro hacia la desembocadura con el océano Pacifico varia de 0 a 400 mm año-1, tal como se ilustra en la Figura 5-6.

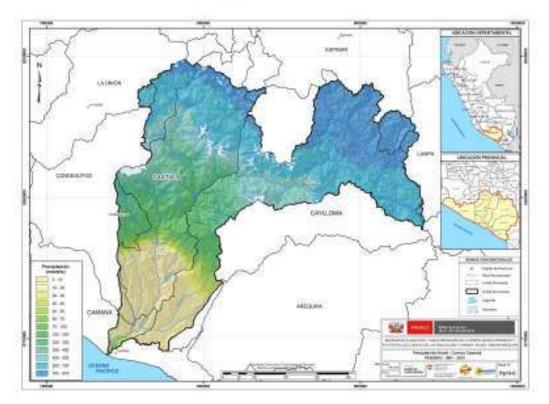


Figura 5-6 Variación espacial de la precipitación anual en la cuenca Camaná-Majes

El año más húmedo en la cuenca para el período 1981-2010, fue el 2000-2001, donde la precipitación anual alcanzó los 613.0 mm; mientras que el año más seco para este mismo período fue 1991-92, con una precipitación anual de 145.0 mm.

En años El Niño, la precipitación está asociada a déficit, mientras que años La Niña se tiene una situación inversa con superávit pluviométrico.

A nivel de subcuencas se ha determinado un amplio rango de variabilidad de la precipitación por subcuenca de acuerdo a su ubicación altitudinal; así tenemos que la Intercuenca Bajo Camaná, ubicada en la zona más baja, la precipitación media alcanza un valor promedio anual de 9.6 mm, mientras que en la subcuenca Maquerullo ubicada a mayor altitud, la precipitación anual es de 889.6 mm, tal como se ilustra en Tabla 5-4 y Figura 5-7.

En subcuencas del sistema fluvial del río Colca, los máximos de precipitación acumulada se presentan en el mes de enero y los mínimos en junio, mientras que en las subcuencas del sistema fluvial del río Camaná los máximos de precipitación se presentan en el mes de febrero y los mínimos en julio. En subcuencas del sistema fluvial del río Colca, el año más húmedo fue el 2011-12; así tenemos que en la subcuenca Maquerullo, la de mayor pluviometría en la cuenca, la precipitación para ese año fue de 1298.0 mm, valor que representa un exceso de 45% sobre su promedio histórico. Por otro lado el año más seco fue 1991-92, donde la precipitación anual bajó hasta 470.3 mm, que representa una anomalía o deficiencia de -47%, con respecto al promedio histórico.

En subcuencas del sistema fluvial del río Camaná, el año más húmedo fue el 2000-01 como es el caso de la subcuenca Capiza donde la precipitación anual fue de 494.0 mm, valor que representa un exceso de 87% sobre su promedio histórico. El año más seco en esta subcuenca fue el 1991-92 donde la precipitación anual bajó a 27.5 mm, valor que representa un déficit de -90% en relación al promedio histórico.

Tabla 5-4 Climatología de la precipitación en unidades hidrográficas de la cuenca Camaná-Majes

CLIM	ATOLO	OGIA E	E LA P	RECIPIT	ACION	MENSU	AL Y AN	IUAL (mm)				
Unidad Hidrográfica	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Sub 1 Intercuenca Bajo Camana	1.4	0.2	1.2	0.6	1.6	1.1	0.6	0.1	0.4	0.4	1.4	0.6	9.6
Sub 2 Molles	0.4	0.3	0.6	2.3	8.3	10.0	6.1	0.8	0.4	0.4	0.6	0.4	30.9
Sub 3 Puluvinas	0.3	0.1	0.3	1.0	4.2	5.5	2.8	0.4	0.1	0.1	0.3	0.1	15.3
Sub 4	6.0	13.9	31.4	67.7	142.1	132.1	108.3	37.0	4.5	3.6	3.2	5.3	555.3
Sub 5	6.1	13.2	30.7	66.6	139.5	132.2	106.7	35.9	4.3	3.3	3.1	5.2	546.9
Sub 6	5.2	15.6	33.9	69.7	145.3	126.5	110.0	39.8	4.9	3.7	3.1	5.3	563.0
Sub 7 Ayo	2.5	2.7	4.2	17.0	52.8	73.4	40.8	5.9	1.7	1.4	1.5	1.3	205.3
Sub 8	7.4	16.4	34.1	74.6	156.8	145.3	119.2	40.6	5.5	4.6	4.0	6.6	615.1
Sub 9	0.9	0.9	1.7	7.9	30.2	40.4	20.8	3.4	0.4	0.4	1.0	0.6	108.5
Sub 10 Capiza	2.5	2.8	6.1	22.0	70.8	93.0	50.1	8.0	1.8	1.4	1.6	1.8	261.8
Sub 11 Intercuenca Colca Camana	2.5	3.7	5.6	23.9	60.6	75.9	49.9	10.2	1.2	1.4	1.6	2.2	238.9
Sub 12	12.2	23.0	39.3	88.3	174.5	164.3	130.6	46.2	8.1	6.0	5.3	9.4	707.2
Sub 13 Llapa	10.6	18.9	32.2	76.0	155.0	146.8	115.9	37.6	5.9	4.8	4.3	8.7	616.6
Sub 14	14.8	27.3	42.6	95.1	180.0	168.1	131.6	49.1	9.9	6.6	6.0	11.2	742.5
Sub 15 Medio colca	8.6	11.9	21.7	60.7	128.4	137.3	103.0	28.3	3.3	3.0	2.9	6.1	515.3
Sub 16	15.5	28.8	44.6	98.4	182.8	171.3	133.6	51.6	11.0	7.1	6.6	11.3	762.6
Sub 17 Negrillo	12.2	24.4	43.2	94.5	186.2	173.7	140.2	50.1	8.4	6.2	5.4	9.5	753.8
Sub 18	18.6	34.8	50.9	110.4	195.3	183.4	140.4	59.1	14.5	8.7	8.5	13.1	837.8
Sub 19 Intercuenca Medio Alto Colca	14.9	25.8	41.5	91.2	174.1	164.5	132.6	47.2	8.1	5.1	4.6	11.2	720.8
Sub 20 El Pañe Negrillo	15.4	30.4	51.4	110.1	209.0	195.1	156.9	57.8	10.3	7.2	6.1	11.5	861.2
Sub 21 Condoroma	17.2	32.8	52.3	112.7	207.8	195.2	154.2	59.0	11.8	7.6	6.9	12.4	869.9
Sub 22	17.2	30.6	47.8	102.5	188.3	178.3	142.5	54.4	10.7	6.4	6.0	12.3	797.0
Sub 23 Maquerullo	18.2	34.6	55.1	116.6	210.1	198.7	157.3	60.3	11.9	7.5	6.6	12.8	889.6
Sub 24 Chalhuanca	17.0	33.0	53.2	113.2	202.7	192.8	155.5	56.5	9.6	6.2	4.9	11.9	856.8
Sub 25 Molloco	9.3	16.1	28.4	74.7	155.2	173.8	125.8	33.9	4.4	3.3	3.3	7.4	635.6
sub 26 Andahua	6.8	11.0	20.8	54.9	120.3	139.2	99.2	25.8	3.7	2.1	3.1	5.6	492.6
Sub 27	0.4	0.3	0.7	2.9	9.0	12.1	6.8	0.9	0.3	0.3	0.6	0.3	34.6

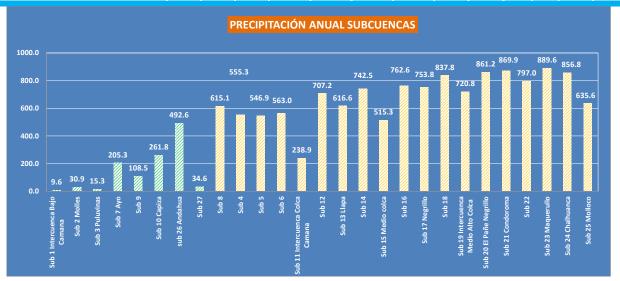


Figura 5-7 Precipitación anual en Unidades Hidrográficas. En barra color verde sistema fluvial del río Camaná y en barra color amarillo del sistema fluvial del río Colca

En el comportamiento decadal de la precipitación media de la cuenca referido al periodo 1981-2016, se ilustra en la Figura 5-8 se ha determinado fluctuaciones en los acumulados de la precipitación, así tenemos que la década de 1981-1990 se ha caracterizado por ser el período de menor pluviometría de todo el período analizado con un promedio multianual de 378.0 mm; por otro lado la década 1991-2000 es la más húmeda con una precipitación promedio de 440.0 mm. Para el período 2011-2016 se ha observado una precipitación promedio anual de 491.0 mm en 20% superior a su normal climática (404 mm), cabe resaltar que en el periodo de estudio los módulos han superado los 200 mm solo en tres ocasiones.

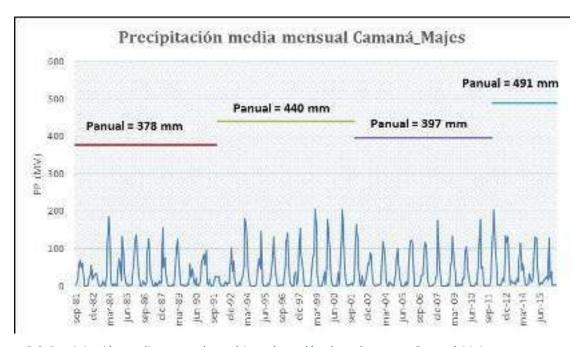


Figura 5-8 Precipitación media mensual y multianual por década en la cuenca Camaná-Majes

Asimismo, las precipitaciones en la cuenca Camana, a escala espacio – mensual muestran: Las precipitaciones en la cuenca Camana-Majes se inician en setiembre llegando hasta 19 mm en el sector noreste de la cuenca alta; progresivamente las precipitaciones se incrementan entre enero y febrero de Oeste-Este ocurriendo las mayores precipitaciones en las zonas altas con acumulados de 237 y 224 mm, respectivamente; para descender entre marzo y abril acumulando 179 y 63 mm, respectivamente. De mayo a agosto es la época seca en toda la región, las precipitaciones son nulas a escasas acumulando las mayores precipitaciones de 14 mm al noreste de la cuenca en las zonas altas, Mapas (Pp 01 - C al Pp 12 - C).

5.3 Climatología de la temperatura del aire

5.3.1 La climatología de la temperatura del aire en la cuenca del río Ocoña

La cuenca del río Ocoña se caracteriza presentar un patrón térmico estacional diferenciado según la época del año y la distribución altitudinal del territorio de la cuenca; para el caso de la temperatura máxima el gradiente térmico mensual fluctúa entre -0.2 a -0.4 °C/100m, mientras que el gradiente térmico de la temperatura mínima está en el rango de -0.4 a -0.5 °C/100.

El comportamiento mensual de la temperatura máxima durante el año, varía en promedio entre 18.6-25.0 °C; el mes más cálido es noviembre con una temperatura máxima promedio de 25.0 °C, y

el mes más frío julio donde la temperatura mínima alcanza valores promedio de -3.3 ºC; por tanto, la estación más cálida en toda la cuenca es primavera asociado a la máxima insolación durante este periodo y la estación más fría es verano (DEF) asociado a la mayor cobertura nubosa.

El rango térmico de variación mensual de la temperatura en la cuenca fluctúa entre 14.3 ºC y 23.8 ºC correspondiente a los meses de febrero y julio, respectivamente, estas variaciones se ilustra en la Tabla 5-5 y Figura 5-9. Tabla 5-5 Climatología de la Temperatura máxima y mínima promedio en la cuenca Ocoña

Douámatua		CLIMA [.]	TOLOG	IA DE L	A TEM	PERATI	JRA M	AXIMA	Y MIN	IMA - C	UENCA	OCOÑ	Α
Parámetro	Set	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Tmáx	24.9	25.3	25.0	22.2	19.5	18.6	22.8	20.6	22.8	23.2	23.5	24.4	22.7
Tmín	-0.6	0.7	1.4	3.0	4.1	4.3	3.9	2.2	-1.1	-2.9	-3.3	-2.1	0.8

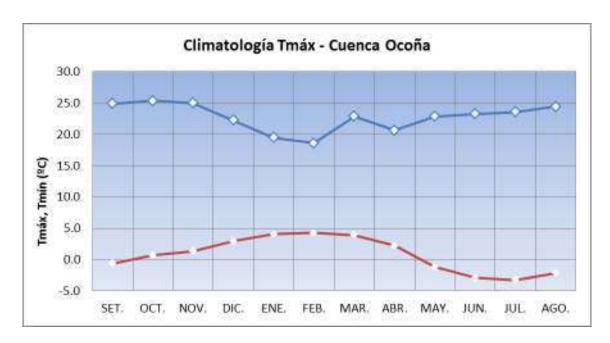


Figura 5-9 Ciclo anual de la temperatura máxima y mínima promedio mensual en la cuenca Ocoña

El comportamiento de la temperatura máxima anual en la cuenca del rio Ocoña varía de 30 °C en la desembocadura con el Océano Pacifico a 15 °C hacia la divisoria de cuenca, el promedio multianual de las temperatura presenta valores que superan los 27°C en el sector occidental con limite hacia la desembocadura con el Océano Pacifico, comprende las partes bajas de la provincia Condesuyo. En la región oriental de la cuenca principalmente en localidades ubicadas sobre los 4000 msnm, la temperatura máxima oscila entre 15-18 °C y en el centro de la cuenca de 21- 24 °C, esta diferencia se debe principalmente al factor altitud, tal como se ilustra en la Figura 5-10.

El comportamiento de la temperatura mínima anual en la cuenca del rio Ocoña varía de 17 °C en la desembocadura con el Océano Pacifico a -12 °C hacia la divisoria de cuenca, el promedio multianual de las temperatura presenta valores que superan los 14°C en el sector occidental con limite hacia la desembocadura con el Océano Pacifico, comprende las partes bajas de la provincia Condesuyo. En la

región oriental de la cuenca principalmente en localidades ubicadas sobre los 4000 msnm, la temperatura mínima oscila entre -12 a -9 $^{\circ}$ C y en el centro de la cuenca de 3-6 $^{\circ}$ C, esta diferencia se debe principalmente al factor altitud, tal como se ilustra en la Figura 5-11.

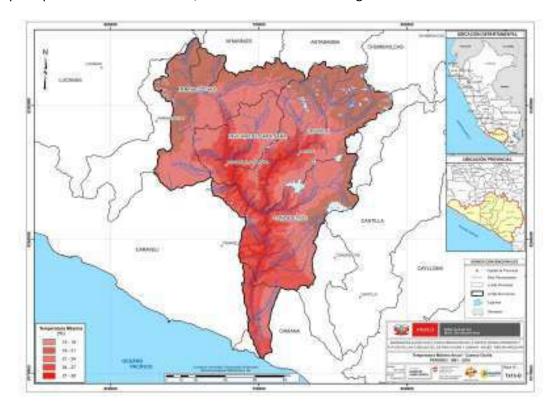


Figura 5-10 Variación espacial de la temperatura máxima anual en la cuenca Ocoña

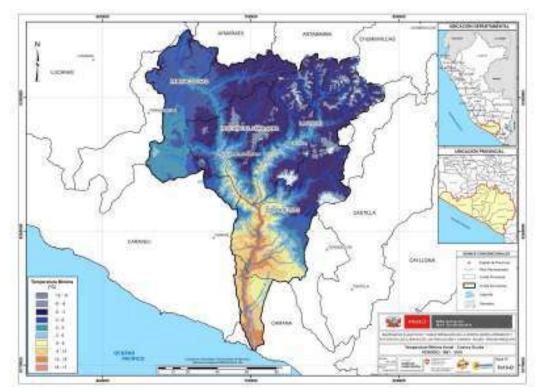


Figura 5-11 Variación espacial de la temperatura mínima anual en la cuenca Ocoña

A nivel de subcuencas la temperatura máxima tiene un rango anual comprendido entre 14.3 °C y 25.9 °C que corresponde a las subcuencas de Oyolo y Bajo Churunga. En Oyolo el pico máximo de la temperatura se presenta en el mes de agosto con un valor de 16.3 °C, mientras que en la subcuenca Bajo Churunga, este pico máximo se presenta en Enero 26.8 °C. Ver Tabla 5-6 y Figura 5-12.

Tabla 5-6 Climatología de la temperatura máxima mensual y anual promedio en unidades hidrográficas de la cuenca Ocoña

CLIMATOLOGIA DE LA	A TEM	PERA1	TURA I	MAXIN	ЛА МЕ	NSUA	LYAN	IUAL I	POR SL	JBCUE	NCA (°C)	
Unidad hidrográfica	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Sub 1 Pacapausa	16.6	16.8	16.5	15.4	13.6	13.1	13.4	14.5	15.1	15.1	15.1	16.0	15.1
Sub 2 Intercuenca	18.8	18.8	18.8	18.8	18.8	18.8	18.8	18.8	18.8	18.8	18.8	18.8	18.8
Sub 3 Pallancata	16.2	16.5	16.4	15.0	13.1	12.6	12.9	13.9	14.4	14.3	14.4	15.4	14.6
Sub 4 Pacchichaca	16.8	17.1	16.9	15.8	14.1	13.6	13.9	14.9	15.3	15.2	15.3	16.1	15.4
Sub 5 Alto Cotahuasi	16.0	16.5	16.3	14.8	12.7	12.2	12.6	13.7	14.0	13.9	14.0	15.2	14.3
Sub 6 De Sumana	16.2	16.7	16.6	15.1	13.1	12.6	13.0	14.0	14.2	14.1	14.2	15.3	14.6
Sub 7 Pampamarca	16.3	16.7	16.5	15.1	13.1	12.6	13.0	14.0	14.4	14.2	14.4	15.4	14.6
Sub 8 Mirmaca	17.3	17.6	17.5	16.6	15.0	14.6	14.8	15.6	15.9	15.8	15.9	16.7	16.1
Sub 9 Unidad Hidrográfica 13691	16.6	17.0	17.1	16.0	14.3	14.0	14.2	14.8	15.0	14.8	15.0	15.9	15.4
Sub 10 Oyolo	15.9	16.3	16.2	14.8	12.8	12.3	12.7	13.6	14.1	13.9	14.1	15.1	14.3
Sub 11 Parinacochas	18.5	18.8	18.8	17.9	16.6	16.2	16.4	17.1	17.1	17.1	17.1	17.9	17.5
Sub 12 Marán	20.2	20.6	20.7	20.0	18.8	18.5	18.7	19.0	18.7	18.7	18.7	19.5	19.3
Sub 13 Intercuecna Cotahuasi	18.3	18.8	18.7	17.7	16.2	15.8	16.1	16.7	16.6	16.5	16.6	17.5	17.1
Sub 14 Chichas	17.8	18.3	18.1	16.9	15.0	14.5	15.0	15.8	15.8	15.7	15.8	16.9	16.3
Sub 15 Churunga	20.2	20.7	20.7	19.8	18.5	18.2	18.5	18.9	18.3	18.3	18.3	19.3	19.1
Sub 16 Chalhuane	21.7	22.4	22.5	21.9	21.0	20.9	21.1	21.2	19.9	20.0	19.9	20.9	21.1
Sub 17 Esbila	23.8	24.6	24.9	24.9	24.6	24.7	24.7	24.3	22.3	22.6	22.3	23.1	23.9
Sub 18 Bajo Churunga	25.5	26.1	26.6	26.8	26.8	26.7	26.7	26.3	24.4	24.7	24.4	24.9	25.8
Sub 19 Intercuenca Medio Bajo Ocoña	24.7	25.2	25.3	25.1	24.5	24.3	24.4	24.5	23.4	23.7	23.4	24.1	24.4
Sub 20 Bajo Ocoña	24.1	24.9	25.5	25.8	25.9	25.9	25.8	25.3	23.1	23.5	23.1	23.6	24.7

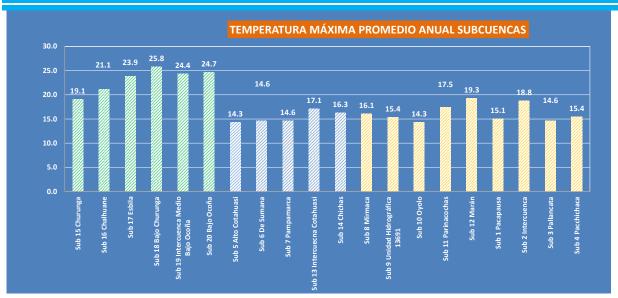


Figura 5-12 Climatología de la Temperatura máxima promedio anual en unidades hidrográficas de la cuenca Ocoña

En el caso de la temperatura mínima, presenta un rango de variabilidad anual comprendido entre -5.2ºC y 11.6 ºC para las subcuencas de Alto Cotahuasi y Bajo Churunga, respectivamente. Para el Alto Cotahuasi, temperatura mínima desciende hasta -10.2 ºC en el mes de julio, mientras que en la subcuenca Bajo Churunga, en el mes de junio la temperatura desciende hasta 9.3 ºC. Ver Tabla 5-7 y Figura 5-13.

Tabla 5-7 Climatología de la temperatura mínima promedio mensual y anual en unidades hidrográficas de la cuenca Ocoña

CLIMATOLOGIA DE LA 1	ЕМРЕ	RATI	JRA IV	IINIM	IA ME	NSUA	AL Y AI	NUAL	POR S	UBCL	JENCA	(°C)	
Unidad hidrográfica	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Sub 1 Pacapausa	-2.9	-1.6	-1.2	0.2	1.0	1.1	0.9	-0.6	-3.9	-5.5	-5.7	-4.4	-1.9
Sub 2 Intercuenca	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
Sub 3 Pallancata	-5.2	-3.6	-3.0	-1.3	-0.2	-0.2	-0.4	-2.2	-6.3	-8.4	-8.7	-7.2	-3.9
Sub 4 Pacchichaca	-2.8	-1.3	-0.8	0.7	1.6	1.6	1.4	-0.3	-3.8	-5.6	-5.9	-4.6	-1.7
Sub 5 Alto Cotahuasi	-6.7	-5.1	-4.4	-2.5	-1.3	-1.2	-1.4	-3.3	-7.7	-9.9	-10.2	-8.7	-5.2
Sub 6 De Sumana	-6.7	-5.0	-4.3	-2.4	-1.1	-1.0	-1.2	-3.1	-7.5	-9.8	-10.1	-8.6	-5.1
Sub 7 Pampamarca	-5.9	-4.3	-3.5	-1.8	-0.6	-0.5	-0.8	-2.7	-7.0	-9.2	-9.5	-8.0	-4.5
Sub 8 Mirmaca	-1.8	-0.3	0.3	1.7	2.6	2.6	2.4	0.7	-2.7	-4.5	-4.8	-3.5	-0.6
Sub 9 Unidad Hidrográfica 13691	-3.8	-1.9	-0.9	0.7	1.8	1.7	1.4	-0.6	-5.0	-7.4	-7.7	-6.1	-2.3
Sub 10 Oyolo	-6.0	-4.1	-3.3	-1.5	-0.4	-0.4	-0.7	-2.7	-7.3	-9.7	-10.0	-8.3	-4.5
Sub 11 Parinacochas	0.0	1.3	1.8	3.2	4.0	4.2	3.9	2.3	-0.7	-2.2	-2.5	-1.4	1.1
Sub 12 Marán	1.1	2.4	3.2	4.7	5.7	5.9	5.5	3.7	0.5	-1.3	-1.7	-0.5	2.4
Sub 13 Intercuecna Cotahuasi	-2.4	-0.9	-0.1	1.6	2.7	2.9	2.5	0.7	-3.1	-5.1	-5.5	-4.1	-0.9
Sub 14 Chichas	-4.6	-3.1	-2.4	-0.5	0.8	1.0	0.7	-1.2	-5.3	-7.4	-7.8	-6.4	-3.0
Sub 15 Churunga	-0.7	0.5	1.3	3.1	4.4	4.7	4.3	2.5	-1.0	-2.8	-3.3	-2.1	0.9
Sub 16 Chalhuane	2.2	3.4	4.2	6.0	7.4	7.8	7.3	5.5	2.3	0.6	0.1	1.0	4.0
Sub 17 Esbila	6.7	7.7	8.6	10.3	11.6	12.1	11.5	9.8	7.3	5.9	5.3	5.9	8.6
Sub 18 Bajo Churunga	10.1	10.8	11.5	12.7	13.9	14.4	13.8	12.4	10.8	9.9	9.3	9.7	11.6
Sub 19 Intercuenca Medio Bajo Ocoña	7.2	7.9	8.4	9.7	10.7	11.2	10.8	9.3	7.5	6.5	6.0	6.6	8.5
Sub 20 Bajo Ocoña	9.6	10.3	11.2	12.5	13.8	14.2	13.6	12.2	10.4	9.3	8.7	9.1	11.2

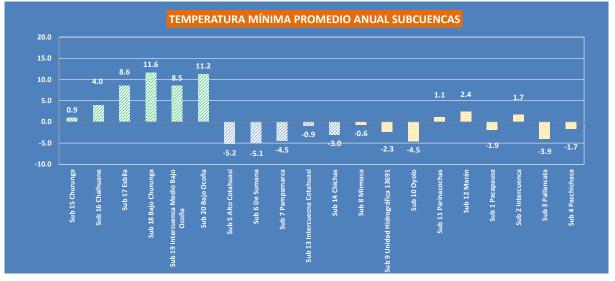


Figura 5-13 Climatología de la Temperatura mínima promedio anual en unidades hidrográficas de la cuenca Ocoña

En general, las temperaturas en la cuenca Ocoña, a escala espacio – mensual se caracterizan de la siguiente manera para:

La temperatura máxima más alta en el ámbito de la cuenca Ocoña se presenta en los meses de octubre y noviembre oscilando entre 21°C y 31°C debido a que en esta temporada se tiene escasa nubosidad y la superficie recibe la máxima radiación solar incidente, mientras que la más baja ocurre en enero y oscila entre 9°C y 31°C, el valor más bajo del rango térmico ocurre en las zonas andinas debido a que parte de la radiación solar incidente es reflejada por mayor nubosidad característico de la temporada de precipitaciones. En tanto, en las zonas bajas de la cuenca la temperatura máxima más alta no presenta variación a lo largo del año, Mapas (Tx 01 - O al Tx 12 - O).

La temperatura del aire mínima más baja se presenta en las zona andina de la cuenca durante los meses de junio, julio de -18°C y agosto de -15°C, asociado a un menor ingreso de radiación solar incidente y a la perdida de calor desde la superficie debido a la escasez de nubosidad nocturna y baja humedad durante este periodo. La temperatura mínima más alta ocurre entre enero y marzo -6°C, época en el que el contenido de humedad en la atmósfera se incrementa debido a la mayor presencia de nubes asociado a la temporada de mayores precipitaciones en la zona andina de la cuenca que impiden la pérdida de calor de la superficie en el periodo nocturno, Mapas (Tn 01 - O al Tn 12 - O).

5.3.2 Climatología de la Temperatura del aire en la cuenca del río Camaná Majes

La cuenca del río Camaná Majes se caracteriza presentar un patrón térmico estacional diferenciado según la época del año y la distribución altitudinal del territorio de la cuenca; para el caso de la temperatura máxima el gradiente térmico mensual fluctúa entre -0.2 a -0.4 °C/100m, mientras que el gradiente térmico de la temperatura mínima está en el rango de -0.4 a -0.5 °/100. Para las condiciones medias de la cuenca, el mes más cálido es noviembre con una temperatura máxima promedio de 22.6 °C, siendo el mes más frío julio donde la temperatura mínima alcanza valores promedio de -4.7°C.

El rango térmico de variación mensual de la temperatura en la cuenca fluctúa entre 13.4 ºC y 23.6 ºC correspondiente a los meses de febrero y julio, respectivamente, tal como se ilustra en la Tabla 5-8 y Figura 5-14.

Tabla 5-8 Climatología de la Temperatura máxima y mínima promedio en la cuenca Camaná-Majes

Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
22.3	22.6	20.4	18.1	17.6	19.5	18.5	19.5	18.9	19.0	20.1	19.8
-0.4	0.5	2.5	4.0	4.3	3.8	1.9	-2.1	-4.2	-4.7	-3.5	0.0
	22.3	22.3 22.6	22.3 22.6 20.4	22.3 22.6 20.4 18.1	22.3 22.6 20.4 18.1 17.6	22.3 22.6 20.4 18.1 17.6 19.5	22.3 22.6 20.4 18.1 17.6 19.5 18.5	22.3 22.6 20.4 18.1 17.6 19.5 18.5 19.5	22.3 22.6 20.4 18.1 17.6 19.5 18.5 19.5 18.9	22.3 22.6 20.4 18.1 17.6 19.5 18.5 19.5 18.9 19.0	Oct Nov Dic Ene Feb Mar Abr May Jun Jul Ago 22.3 22.6 20.4 18.1 17.6 19.5 18.5 19.5 18.9 19.0 20.1 -0.4 0.5 2.5 4.0 4.3 3.8 1.9 -2.1 -4.2 -4.7 -3.5

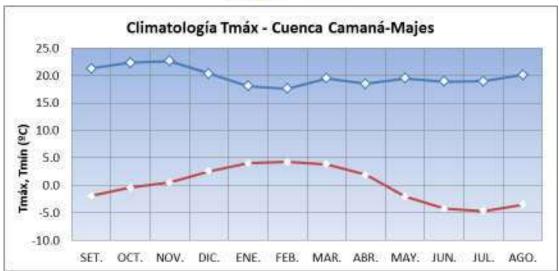


Figura 5-14 Ciclo anual de la temperatura máxima y mínima media mensual en la cuenca Camaná-majes

En general, el comportamiento espacial en toda la cuenca del rio Camana, de la temperatura media multianual máxima varia de 12 a 29 ºC y la temperatura mínima de -12 a 17 ºC en la cuenca del rio Camana Majes en ambos casos las temperaturas más bajas se presentan hacia el oriente y zonas altas de la cuenca y las temperaturas más altas se presentan hacia la desembocadura con el Océano Pacifico, zonas bajas de la cuenca, tal como se ilustra en las Figuras 5-15 y 5-16.

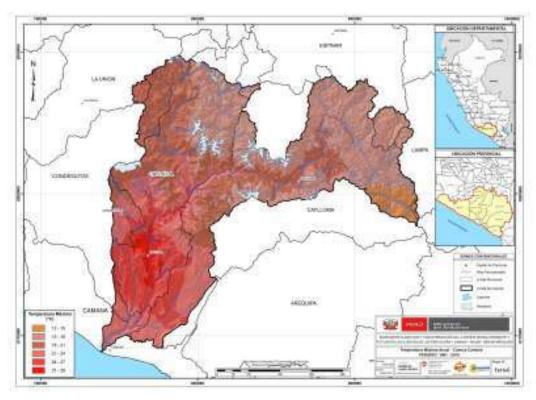


Figura 5-15 Variación espacial de la temperatura máxima anual en la cuenca Camaná-Majes

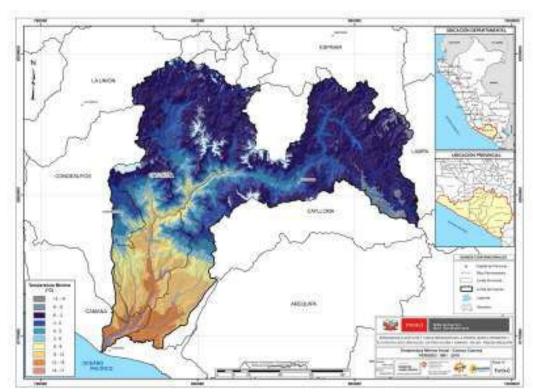


Figura 5-16 Variación espacial de la temperatura mínima anual en la cuenca Camaná Majes

A nivel de subcuencas queda reflejado el amplio rango de la variabilidad espacial de la temperatura del aire, así tenemos que para el caso de la temperatura máxima, en la subcuenca Intercuenca Bajo Camana se presenta la mayor temperatura máxima anual con 26.6 °C, registrándose el mes más cálido febrero con valores medios de 28.4 °C. Por otro lado la subcuenca 5 exhibe la menor temperatura máxima con 12.7 °C, registrando su pico máximo en noviembre con 14.6 °C. Ver Tabla 5-9 y Figura 5-17.

Para el caso de la temperatura mínima a escala temporal, la Intercuenca Bajo Camaná exhibe los promedio más altos, a nivel anual alcanza 12.7 °C y julio es el mes menos frio con 9.6 °C. En la subcuenca 5 presenta una temperatura anual de -6.5 °C siendo el mes más frío julio donde la temperatura desciende hasta -12.1 °C. Ver Tabla 5-10 y Figura 5-18.

Tabla 5-9 Climatología de la temperatura máxima en unidades hidrográficas - cuenca Camaná Majes

C	LIMAT	OLOG	IA DE	LA Tm	áx ME	NSUA	LYAN	UAL (ºC)				
Unidad Hidrográfica	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Sub 1 Intercuenca Bajo Camana	25.9	26.7	27.2	27.6	28.0	28.4	28.3	27.2	26.1	24.8	24.4	25.2	26.6
Sub 2 Molles	24.4	24.9	25.0	24.9	24.8	25.0	25.1	24.5	24.1	23.4	23.2	24.0	24.5
Sub 3 Puluvinas	24.4	25.3	25.7	25.7	25.7	25.9	25.9	25.2	24.1	22.7	22.3	23.4	24.7
Sub 4	13.8	14.8	15.0	14.3	12.7	12.5	12.6	13.0	12.8	11.9	11.7	12.8	13.2
Sub 5	13.4	14.4	14.6	13.8	12.2	12.0	12.1	12.5	12.3	11.5	11.3	12.4	12.7
Sub 6	14.1	15.0	15.2	14.4	12.7	12.5	12.6	13.1	13.0	12.2	12.0	13.1	13.3
Sub 7 Ayo	20.2	20.9	21.0	20.2	19.1	19.0	19.2	19.4	19.1	18.3	18.2	19.3	19.5
Sub 8	14.7	15.6	15.7	14.8	13.0	12.8	13.0	13.5	13.4	12.7	12.6	13.7	13.8
Sub 9	22.7	23.6	23.9	23.4	22.8	23.0	23.1	22.7	21.8	20.4	20.1	21.5	22.4
Sub 10 Capiza	19.4	20.1	20.1	19.1	17.7	17.5	17.8	18.2	18.0	17.3	17.2	18.5	18.4
Sub 11 Intercuenca Colca Camana	19.9	20.6	20.6	19.8	18.6	18.5	18.7	18.9	18.7	17.9	17.8	19.0	19.1
Sub 12	16.2	17.1	17.3	16.1	14.3	13.9	14.3	14.9	14.8	14.1	14.1	15.3	15.2
Sub 13 Llapa	17.2	18.2	18.4	17.2	15.3	15.0	15.3	15.9	15.8	15.1	15.1	16.3	16.2
Sub 14	16.9	17.8	18.2	16.8	14.9	14.5	14.9	15.4	15.4	14.7	14.7	15.9	15.8
Sub 15 Medio colca	18.0	18.7	18.8	17.5	15.7	15.4	15.8	16.5	16.6	15.9	15.9	17.1	16.8
Sub 16	16.8	17.8	18.1	16.8	15.0	14.6	15.0	15.5	15.4	14.7	14.7	15.9	15.8
Sub 17 Negrillo	15.7	16.5	16.7	15.5	13.6	13.3	13.6	14.3	14.3	13.6	13.6	14.8	14.6
Sub 18	16.7	17.7	18.0	16.7	14.8	14.4	14.8	15.3	15.3	14.6	14.6	15.8	15.7
Sub 19 Intercuenca Medio Alto Colca	17.1	18.1	18.5	17.2	15.4	15.0	15.3	15.7	15.7	15.0	14.9	16.1	16.2
Sub 20 El Pañe Negrillo	15.7	16.5	16.5	15.2	13.2	12.8	13.2	14.0	14.1	13.5	13.5	14.7	14.4
Sub 21 Condoroma	15.9	16.8	16.9	15.6	13.6	13.2	13.6	14.3	14.4	13.8	13.8	15.0	14.7
Sub 22	16.9	17.8	18.2	17.0	15.2	14.9	15.2	15.6	15.6	14.9	14.8	16.0	16.0
Sub 23 Maquerullo	16.2	17.1	17.3	16.0	14.1	13.7	14.1	14.6	14.8	14.2	14.1	15.3	15.1
Sub 24 Chalhuanca	16.1	17.0	17.3	16.1	14.3	14.0	14.3	14.6	14.8	14.1	14.1	15.1	15.1
Sub 25 Molloco	16.2	16.9	16.9	15.5	13.5	13.2	13.6	14.3	14.6	14.1	14.1	15.2	14.8
sub 26 Andahua	17.2	17.8	17.7	16.4	14.6	14.2	14.6	15.3	15.6	15.1	15.1	16.3	15.8
Sub 27	24.2	25.1	25.5	25.3	25.2	25.5	25.5	24.8	23.7	22.3	22.0	23.2	24.4

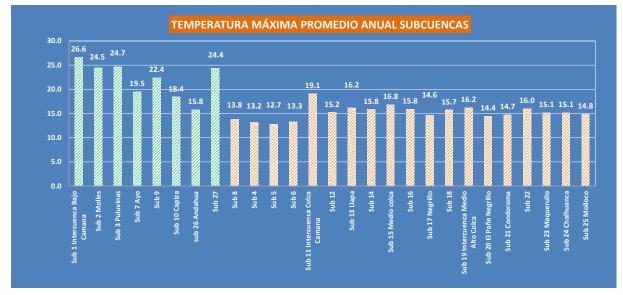


Figura 5-17 Temperatura máxima en lasunidades hidrográficas de la cuenca Camaná-Majes

Tabla 5-10 Climatología de la Temperatura mínima en unidades hidrográficas - cuenca Camaná Majes

CLIMATOLOG	IA DE	LA T	mín I	MENS	UAL	Y ANI	JAL (º	C) PC	OR SUI	BCUEN	ICA		
Unidad Hidrográfica	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Sub 1 Intercuenca Bajo Camana	10.6	11.5	12.6	14.4	16.0	16.5	15.8	13.9	11.7	10.2	9.6	10.0	12.7
Sub 2 Molles	8.0	8.9	9.7	11.2	12.7	13.2	12.7	10.9	8.5	7.1	6.6	7.2	9.7
Sub 3 Puluvinas	6.5	7.7	9.0	11.1	12.7	13.2	12.5	10.5	7.5	5.6	5.0	5.6	8.9
Sub 4	-8.6	-6.9	-5.6	-2.9	-1.0	-0.8	-1.1	-3.2	-8.1	-10.8	-11.4	-10.2	-5.9
Sub 5	-9.3	-7.5	-6.2	-3.5	-1.6	-1.4	-1.7	-3.8	-8.8	-11.6	-12.1	-10.9	-6.5
Sub 6	-8.4	-6.7	-5.4	-2.9	-1.0	-0.8	-1.2	-3.2	-8.1	-10.7	-11.2	-10.0	-5.8
Sub 7 Ayo	-0.4	1.0	2.0	3.9	5.4	5.7	5.2	3.3	-0.4	-2.5	-2.9	-1.8	1.5
Sub 8	-8.0	-6.2	-5.1	-2.7	-0.9	-0.8	-1.1	-3.1	-7.9	-10.5	-10.9	-9.6	-5.6
Sub 9	2.2	3.7	5.0	7.4	9.1	9.5	8.9	6.7	2.9	0.6	0.0	0.9	4.7
Sub 10 Capiza	-2.4	-0.9	0.0	2.1	3.6	3.9	3.5	1.5	-2.6	-4.8	-5.2	-4.0	-0.4
Sub 11 Intercuenca Colca Camana	-1.0	0.4	1.3	3.3	4.8	5.0	4.6	2.7	-1.1	-3.2	-3.6	-2.5	0.9
Sub 12	-6.6	-4.8	-3.8	-1.6	0.0	0.1	-0.2	-2.2	-7.0	-9.5	-9.9	-8.4	-4.5
Sub 13 Llapa	-5.7	-3.8	-2.8	-0.8	0.8	0.8	0.5	-1.6	-6.4	-8.9	-9.3	-7.7	-3.7
Sub 14	-6.5	-4.5	-3.5	-1.3	0.3	0.3	0.0	-2.1	-7.2	-9.8	-10.3	-8.6	-4.5
Sub 15 Medio colca	-4.2	-2.7	-1.9	-0.2	1.0	1.1	0.7	-1.1	-5.1	-7.2	-7.5	-6.1	-2.8
Sub 16	-6.0	-4.2	-3.1	-1.0	0.6	0.7	0.3	-1.7	-6.6	-9.1	-9.6	-8.0	-4.0
Sub 17 Negrillo	-7.1	-5.4	-4.3	-2.2	-0.6	-0.4	-0.8	-2.7	-7.5	-9.9	-10.3	-8.9	-5.0
Sub 18	-6.2	-4.3	-3.3	-1.2	0.4	0.5	0.1	-1.9	-6.8	-9.3	-9.8	-8.2	-4.2
Sub 19 Intercuenca Medio Alto Colca	-5.8	-3.8	-2.8	-0.7	0.9	1.0	0.6	-1.4	-6.4	-9.0	-9.5	-7.9	-3.7
Sub 20 El Pañe Negrillo	-7.5	-5.7	-4.8	-2.6	-1.1	-1.0	-1.3	-3.3	-8.0	-10.5	-10.9	-9.4	-5.5
Sub 21 Condoroma	-7.3	-5.4	-4.5	-2.4	-0.8	-0.7	-1.0	-3.0	-7.8	-10.3	-10.8	-9.2	-5.3
Sub 22	-5.5	-3.6	-2.6	-0.5	1.0	1.1	0.8	-1.2	-5.9	-8.4	-8.9	-7.4	-3.4
Sub 23 Maquerullo	-6.5	-4.7	-3.8	-1.7	-0.2	-0.1	-0.4	-2.3	-7.0	-9.5	-10.0	-8.5	-4.6
Sub 24 Chalhuanca	-6.1	-4.2	-3.3	-1.2	0.3	0.4	0.1	-1.7	-6.3	-8.8	-9.4	-7.9	-4.0
Sub 25 Molloco	-6.8	-5.0	-4.2	-2.2	-0.8	-0.7	-1.0	-2.8	-7.3	-9.8	-10.2	-8.7	-5.0
sub 26 Andahua	-5.3	-3.7	-2.9	-0.9	0.4	0.6	0.3	-1.6	-5.9	-8.2	-8.5	-7.1	-3.6
Sub 27	5.5	6.8	8.1	10.3	12.0	12.5	11.8	9.7	6.4	4.3	3.7	4.4	8.0

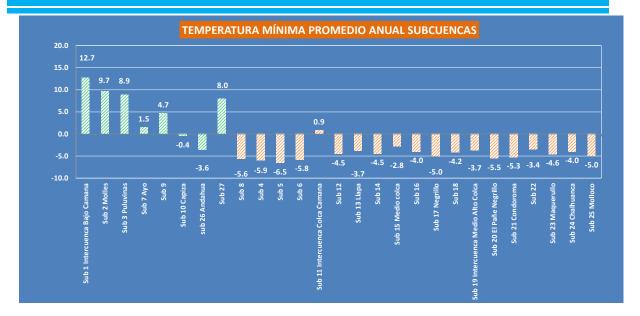


Figura 5-18 Temperatura mínima en las diferentes unidades hidrográficas de la cuenca Camaná-Majes

En general, las temperaturas en la cuenca Camana, a escala espacio – mensual se caracterizan por:

La temperatura máxima en la cuenca Camana, anivel espacial, se presenta más alta en el ámbito la en noviembre oscilando entre 15°C y 31°C debido a que en esta temporada se tiene escasa nubosidad y la superficie recibe la máxima radiación solar incidente, mientras que la más baja ocurre en los meses de enero y febrero oscilando entre 9°C y 31°C, el valor más bajo del rango térmico ocurre en las zonas andinas debido a que parte de la radiación solar incidente es reflejada por mayor nubosidad característico de la temporada de precipitaciones. En tanto, en las zonas bajas de la cuenca la temperatura máxima más alta no presenta variación a lo largo del año, Mapas (Tx 01 - C al Tx 12 - C).

La temperatura del aire mínima en la cuenca Camana, anivel espacial más baja se presenta en las zona andina de la cuenca durante los meses de junio y julio de -12°C a -15°C, asociado a un menor ingreso de radiación solar incidente y a la perdida de calor desde la superficie debido a la escasez de nubosidad nocturna y baja humedad durante este periodo. La temperatura mínima más alta ocurre entre enero y marzo entre -3°C y -6°C, época en el que el contenido de humedad en la atmósfera se incrementa debido a la mayor presencia de nubes asociado a la temporada de mayores precipitaciones en la zona andina de la cuenca que impiden menor pérdida de calor de la superficie en el periodo nocturno, respecto a los meses de mayo-agosto, Mapas (Tn 01 - C al Tn 12 - C).

5.3.3 Gradiente de la temperatura del aire regional

En la Figura 5-19 se observa la relación de la temperatura promedio multimensual máxima (1981 – 2010) versus la elevación, en el que se observa una relación débil para los meses de julio, agosto, setiembre y octubre con coeficiente de determinación menor a 0.5; sin embargo para el resto del año supera este valor. Sin embargo, la relación de la temperatura promedio multimensual mínima versus la elevación tiene una muy buena representación, con coeficientes de determinación mayores de 0.82 para todos los meses del año, tal como se ilustra en la Figura 5-20.

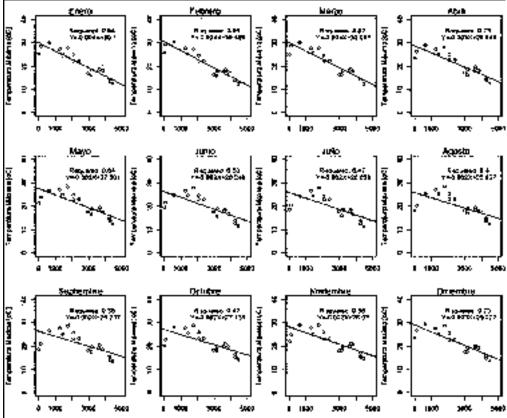


Figura 5-19 Gradiente térmico mensual regional de la temperatura máxima del aire

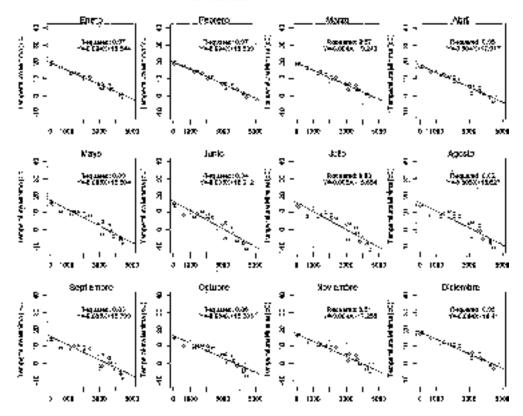


Figura 5-20 Gradiente térmico mensual regional de la temperatura mínima del aire

Es así, que se verifica la existencia de la relación entre estas dos variables por lo que para las técnicas multivariadas como kriging con deriva externa se utiliza como covariable la elevación, para fines de espacialización.

5.4 Climatología de la Evapotranspiración de referencia

5.4.1 La Climatología de la Evapotranspiración Potencial en la cuenca del río Ocoña

La evapotranspiración potencial (Eto) en la cuenca del rio ocoña representativo del periood 1981-2010 alcanza su valor máximo mensual en el mes de noviembre de 169.8 mm; en el mes de junio la Eto alcanza sus valores más bajos con 104.6 mm. El valor acumulado anual de la Eto promedio de la cuenca es de 1619.6 mm. Ver Tabla 5-11 y Figura 5-21 que indican su variación temporal.

Tabla 5-11 Climatología de la Eto mensual y anual promedio en la cuenca Ocoña

Daućmatua			CLIN	/IATOLO	GIA DE	LA Eto N	/IENSUA	L Y ANU	AL - CU	ENCA O	COÑA		
Parámetro	Set	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Eto	146.7	169.2	169.8	159.1	139.8	117.6	137.0	116.7	116.1	104.6	112.3	130.6	1619.6

Figura 5-21 Climatología de la Eto promedio mensual en unidades hidrográficas de la cuenca Ocoña

El comportamiento de la Eto anual en la cuenca del rio Ocoña varía de 1200 mm año-1 a 2061 mm año-1, el promedio multianual de la Eto presenta valores que superan los 2000 mm año-1 en el sector de la provincia Paucar del Sara Sara, tal como se ilustra en la Figura 5-22.

A nivel de subcuencas está comprendida entre 1465.0 mm/año y 1802.0 mm/año que corresponde a las subcuencas Pacapausa y Maran, respectivamente. En la subcuenca Pacapausa los valores extremos mensuales de la Eto están comprendidos entre 92.1 mm y 156.8 mm para los meses de junio y noviembre, respectivamente. Por otro lado en la subcuenca Maran, los valores extremos mensuales de la Eto se presenta en los meses de junio y noviembre, con valores acumulados de 117.3 mm y 183.4 mm, respectivamente. Ver Tabla 5-12 Y Figura 5-23.

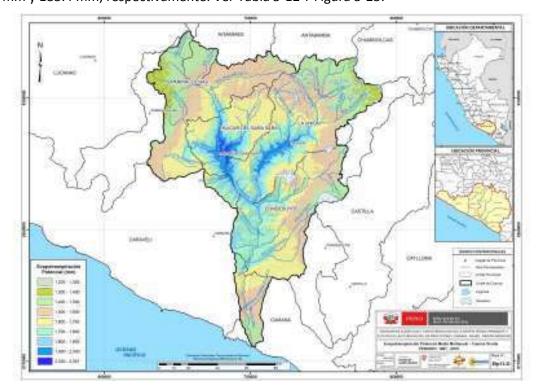


Figura 5-22 Variación espacial de la Eto promedio anual de la cuenca Ocoña

Tabla 5-12 Climatología Eto en unidades hidrográficas - cuenca Ocoña

CLIMA	TOLOG	A DE L	A ETo N	/ENSU	AL Y AI	NUAL P	OR SU	BCUEN	CA (mn	n)			
Unidad Hidrográfica	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Sub 1 Pacapausa	132.9	154.9	156.8	145.5	126.6	107.0	123.7	106.5	104.1	92.1	98.6	116.3	1465.1
Sub 2 Intercuenca	123.3	123.3	123.3	123.3	123.3	123.3	123.3	123.3	123.3	123.3	123.3	123.3	1479.2
Sub 3 Pallancata	143.7	165.0	164.0	149.9	128.6	108.0	130.6	110.2	112.2	102.0	109.7	128.2	1552.3
Sub 4 Pacchichaca	141.5	163.2	164.0	153.1	134.3	113.9	133.0	113.4	112.2	100.6	107.8	125.8	1562.8
Sub 5 Alto Cotahuasi	140.2	161.4	159.9	143.8	120.9	100.6	123.8	103.9	107.1	97.8	105.6	124.2	1489.2
Sub 6 De Sumana	138.5	159.7	158.7	142.8	119.8	99.7	122.4	102.6	105.5	96.1	103.7	122.2	1471.8
Sub 7 Pampamarca	153.4	175.1	172.1	155.1	131.5	109.1	136.3	113.7	119.0	110.3	119.2	138.5	1633.2
Sub 8 Mirmaca	144.7	166.5	167.4	158.1	140.0	119.1	137.8	117.5	115.7	103.7	110.9	129.1	1610.5
Sub 9 Unidad Hidrográfica 13691	157.5	178.8	177.4	166.4	147.3	125.8	150.0	125.8	127.7	116.5	124.8	143.5	1741.7
Sub 10 Oyolo	156.6	177.9	175.0	159.9	137.6	115.7	142.5	118.9	123.5	114.1	123.0	142.3	1686.9
Sub 11 Parinacochas	142.8	165.2	167.2	159.6	141.9	120.3	136.9	117.4	114.0	101.4	108.6	126.5	1602.0
Sub 12 Marán	160.0	182.9	183.4	176.9	159.3	134.9	155.4	131.7	130.0	117.3	125.8	144.4	1802.0
Sub 13 Intercuecna Cotahuasi	160.4	183.2	181.5	167.7	146.3	122.0	148.2	124.0	127.6	117.6	126.7	145.6	1750.7
Sub 14 Chichas	147.1	169.6	168.6	153.9	131.1	108.8	132.1	110.8	113.3	103.3	111.5	130.6	1580.9
Sub 15 Churunga	142.6	166.2	168.4	159.3	140.2	117.6	133.5	114.3	111.6	98.9	106.2	124.6	1583.5
Sub 16 Chalhuane	141.5	166.0	170.2	164.5	148.5	125.7	136.3	118.8	112.9	98.5	105.1	122.9	1611.0
Sub 17 Esbila	139.8	165.3	172.1	171.8	160.7	137.0	140.0	125.4	114.9	98.3	104.3	121.0	1650.6
Sub 18 Bajo Churunga Sub 19 Intercuenca Medio	139.8		174.2					130.7		98.6	104.9		1689.0
Bajo Ocoña	148.7	174.6	179.9	180.3	166.5	139.6	148.5	130.6	120.7	104.7	112.2	129.7	1736.0
Sub 20 Bajo Ocoña	126.9	152.1	161.3	165.6	159.2	135.6	131.0	121.3	107.0	89.7	95.0	109.2	1553.9

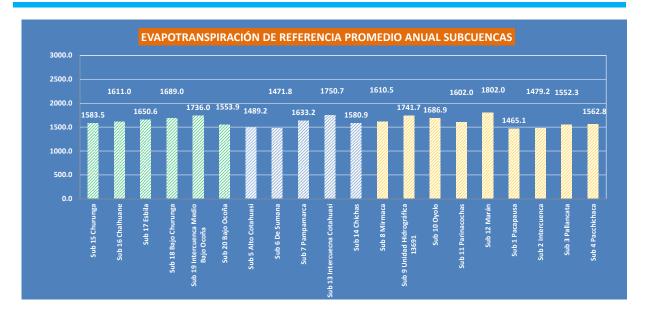


Figura 5-23 Climatología anual de la Eto en unidades hidrográficas de la cuenca Ocoña

5.4.2 Climatología de la evapotranspiración de referencia en la cuenca del río Camana Majes

La Eto alcanza su valor máximo mensual en noviembre con 154.5 mm; y su valor más bajos en junio con 87.0 mm. El valor acumulado anual de la Eto promedio de la cuenca es de 1429.2 mm. Ver Tabla 5-13 y Figura 5-24.

Tabla 5-13 Climatología de la Eto mensual y anual promedio en la cuenca Camaná-Majes

Parámetro		CLIMATOLOGIA DE LA ETO MENSUAL Y ANUAL - CUENCA CAMANA MAJES													
	Set	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual		
Promedio	127.2	150.3	154.5	145.9	128.7	109.6	119.3	104.3	100.2	87.0	92.6	109.5	1429.2		

Figura 5-24 Climatología de la Eto promedio mensual en unidades hidrográficas de la cuenca Camana

El comportamiento de la Eto anual en la cuenca del rio Camana varía de 1000 mm año-1 a 1850 mm año-1, el promedio multianual de la Eto presenta valores que superan los 1600 mm año-1 en el sector del centro de la provincia Castilla, tal como se ilustra en la Figura 5-25.

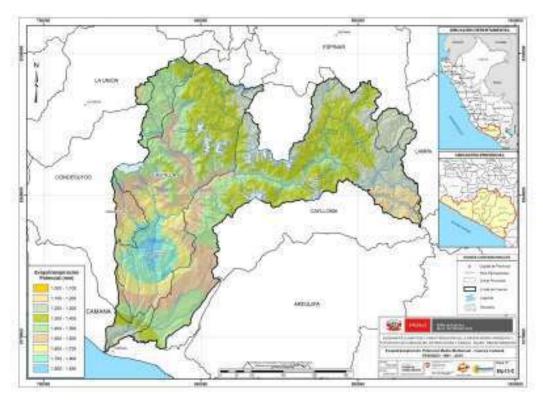


Figura 5-25 Variación espacial de la Eto promedio anual de la cuenca Camana

A nivel de subcuencas la variación anual de la Eto está comprendida entre 1117.8 mm/año y 1679.7 mm/año que corresponde a las subcuencas 5 y 27, respectivamente. En la subcuenca 5 los valores extremos mensuales de la Eto están comprendidos entre 67.1 mm y 125.2 mm para los meses de junio y noviembre, respectivamente. Por otro lado en la subcuenca 27, los valores extremos mensuales de la Eto se presenta en los meses de junio y noviembre, con valores acumulados de 97.6 mm y 177.3 mm, respectivamente. Ver Tabla 5-14 y Figura 5-26.

Tabla 5-14 Climatología de la Eto promedio mensual y anual en Unidades Hidrográficas de la cuenca Camaná-Majes

CLIMATOLOGIA DE LA ETO MENSUAL Y ANUAL (mm) POR SUBCUENCA													
Unidad Hidrográfica	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Sub 1 Intercuenca Bajo Camana	115.0	140.8	153.0	157.9	156.3	134.7	117.4	117.5	100.5	81.5	84.5	96.9	1456.1
Sub 2 Molles	122.3	147.6	159.1	160.8	153.0	130.8	122.7	115.6	102.7	84.8	89.0	104.0	1492.3
Sub 3 Puluvinas	133.9	159.7	167.7	166.8	158.0	136.2	132.3	122.6	110.8	93.3	98.0	114.2	1593.4
Sub 4	101.1	122.6	126.9	117.9	99.6	84.8	95.3	82.2	79.2	68.4	72.5	86.4	1137.0
Sub 5	99.7	121.0	125.2	116.0	97.5	83.0	93.7	80.7	77.8	67.1	71.2	85.0	1117.9
Sub 6	103.4	124.9	128.8	119.3	100.3	85.2	96.5	83.0	80.3	69.6	73.9	88.4	1153.8
Sub 7 Ayo	135.4	159.0	163.0	154.6	137.4	117.1	128.3	111.3	107.1	93.5	99.5	117.3	1523.6
Sub 8	108.0	129.7	133.1	122.9	103.0	87.4	100.0	85.7	83.5	72.7	77.3	92.5	1195.7
Sub 9	146.7	172.6	177.0	171.2	156.6	134.9	140.2	124.7	116.7	100.1	106.0	125.5	1672.2
Sub 10 Capiza	138.5	161.9	164.3	153.6	134.3	113.7	128.3	110.1	107.5	94.7	101.3	119.9	1528.0
Sub 11 Intercuenca Colca Camana	132.6	156.0	160.1	151.4	133.9	114.1	125.0	108.4	104.3	90.8	96.7	114.4	1487.6
Sub 12	118.0	140.3	143.1	132.0	110.6	93.9	108.8	92.6	91.2	79.8	85.0	101.6	1297.0
Sub 13 Llapa	121.9	145.0	147.8	137.0	114.7	97.8	113.2	96.4	95.1	83.1	88.3	105.4	1345.6
Sub 14	121.9	144.7	147.1	136.1	112.9	96.1	112.7	95.6	94.8	82.9	88.0	105.1	1337.9
Sub 15 Medio colca	122.6	145.1	148.6	136.9	117.1	100.0	113.5	96.8	94.9	83.3	89.1	106.3	1354.0
Sub 16	121.2	143.7	146.4	135.5	113.5	96.6	112.2	95.4	94.3	82.5	87.7	104.5	1333.3
Sub 17 Negrillo	116.0	137.8	140.5	129.0	108.0	91.5	106.1	90.4	89.0	77.9	83.1	99.5	1268.9
Sub 18	121.2	143.2	145.8	134.5	112.8	95.9	111.8	94.9	94.1	82.4	87.7	104.4	1328.7
Sub 19 Intercuenca Medio Alto Colca	121.9	144.1	146.9	136.3	114.3	97.5	113.7	96.4	95.9	83.9	89.0	105.5	1345.3
Sub 20 El Pañe Negrillo	117.8	139.2	141.4	128.8	107.4	90.7	106.3	90.2	89.3	78.4	83.9	100.7	1274.2
Sub 21 Condoroma	118.9	140.3	142.6	130.1	108.7	91.9	107.7	91.3	90.6	79.5	84.9	101.7	1288.2
Sub 22	121.0	142.4	145.6	134.7	114.2	97.3	112.5	95.6	94.8	83.1	88.4	104.5	1334.2
Sub 23 Maquerullo	120.2	141.2	144.0	131.3	111.1	94.1	109.3	92.8	91.9	80.5	86.0	102.5	1304.9
Sub 24 Chalhuanca	118.1	137.9	141.4	129.4	110.8	94.1	108.8	91.9	91.7	80.5	86.0	101.4	1292.1
Sub 25 Molloco	121.7	142.3	144.3	131.1	110.4	93.2	109.9	92.6	92.9	82.3	88.3	105.1	1314.0
sub 26 Andahua	133.1	154.8	155.8	142.2	121.0	101.5	120.3	101.5	102.1	91.4	98.2	116.2	1438.2
Sub 27	143.4	170.2	177.3	175.5	164.7	142.6	139.9	127.9	116.2	97.6	102.8	121.6	1679.7

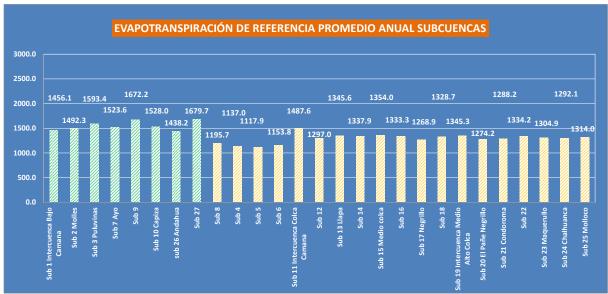


Figura 5-26 Climatología anual de la Eto en unidades hidrográficas de la cuenca Camaná-Majes

5.5 Conclusiones

5.5.1 Respecto a la caracterización de la precipitación actual

En la cuenca del río Ocoña, en el conjunto de subcuencas evaluadas, se ha determinado que la subcuenca Bajo Ocoña presenta la menor pluviometría anual con 2.5 mm; en el lado opuesto, la subcuenca Alto Cotahuasi, presenta la mayor pluviometría anual con 795.5 mm. La subcuenca del río Bajo Ocoña se caracteriza por picos máximos de 0.7 mm en el mes de febrero y valores mínimos de 0 mm en el mes de agosto. La subcuenca del río Alto Cotahuasi, se caracteriza por presentar una pluviometría con picos máximos de 201.9 mm en el mes de febrero y valores mínimos de 5.0 mm en el mes de junio.

En la cuenca del río Camana, en el conjunto de subcuencas evaluadas, se ha determinado que la Intercuenca Bajo Camana (sub 1) presenta la menor pluviometría anual con 9.6 mm; en el lado opuesto, la subcuenca Maquerullo (sub 23), presenta la mayor pluviometría anual con 889.6 mm. La Intercuenca Bajo Camana se caracteriza por picos máximos de 1.6 mm en el mes de enero y valores mínimos de 0.4 mm en el mes de junio. La subcuenca Maquerullo, se caracteriza por presentar una pluviometría con picos máximos de 210.1 mm en el mes de enero y valores mínimos de 6.6 mm en el mes de junio.

5.5.2 Respecto a la caracterización de la Temperatura del aire

La temperatura máxima en la región Arequipa, exhibe un gradiente térmico negativo, lo cual quiere decir que a elevaciones mayores se presenta las temperaturas menos cálidas, mientras que a elevaciones menores la temperatura se incrementa. En general la temperatura máxima en esta región decrece con un gradiente térmico mensual de -0.5 ºC/100.

A escala de la cuenca Ocoña, el rango térmico anual varia de 14.3 a 25.8 oC correspondiente a las subcuencas Oyolo y Bajo Churunga. La subcuenca Oyolo se caracteriza por picos máximos de 16.3 o C en el mes de octubre y valores mínimos de 12.3 mm en el mes de febrero. La subcuenca Bajo Churunga, se caracteriza por presentar con picos máximos de 26.8 oC en el mes de enero y valores mínimos de 24.4 mm en el mes de mayo.

A escala de la cuenca Camana, el rango térmico anual varia de 12.7 a 26.6 oC correspondiente a las Intercuenca Bajo Camana y subcuenca 5. La Intercuenca Bajo Camana se caracteriza por picos máximos de 28.4 o C en el mes de febrero y valores mínimos de 24.4 mm en el mes de julio. La subcuenca 5, se caracteriza por presentar con picos máximos de 14.6 oC en el mes de noviembre y valores mínimos de 11.3 mm en el mes de julio.

5.5.3 Respecto a la caracterización de la evapotranspiración de referencia

Las estimaciones de la evapotranspiración de referencia se han realizado con el método de Hargreaves-Samani, en la cuenca del río Ocoña, en el conjunto de subcuencas evaluadas, se ha determinado que la Subcuenca Pacapausa (sub 1) presenta la menor evapotranspiración de referencia anual con 1465.1 mm/año; en el lado opuesto, la subcuenca Maran (sub 12), presenta la mayor evapotranspiración de referencia anual con 1802 mm. La subcuenca Pacapausa se caracteriza por picos máximos de 156.8 mm en el mes de noviembre y valores mínimos de 92.1 mm en el mes de junio. La subcuenca Maran, se caracteriza por presentar una evapotranspiración de referencia con picos máximos de 183.4 mm en el mes de noviembre y valores mínimos de 117.3 mm en el mes de junio.

En la cuenca del río Camana, en el conjunto de subcuencas evaluadas, se ha determinado que la Subcuenca 5 presenta la menor evapotranspiración de referencia anual con 1117.9 mm/año; en el lado opuesto, la subcuenca 27 presenta la mayor evapotranspiración de referencia anual con 1679.7 mm. La subcuenca 5 se caracteriza por picos máximos de 125.2 mm en el mes de noviembre y valores mínimos de 67.1 mm en el mes de junio. La subcuenca 27, se caracteriza por presentar una evapotranspiración de referencia con picos máximos de 177.3 mm en el mes de noviembre y valores mínimos de 97.6 mm en el mes de junio.

A escala diaria en la cuenca del rio Ocoña en promedio presenta una evapotranspiración de referenica de 4.0 a 5.0 mm/dia, y en la cuenca del rio Camana de 3.1 a 4.6 mm/dia.

CAPÍTULO VI

Tendencias del clima medio e indicadores de extremos de temperatura y precipitación

6. Tendencias del clima medio

El cambio climático es un proceso que viene ocurriendo principalmente debido al aumento de la temperatura a escala global producto de las emisiones de gases de efecto invernadero. De acuerdo al Quinto Informe del IPCC (2015) los cambios en el clima han causado impactos en los sistemas naturales y humanos de todos los continentes durante los últimos decenios; así mismo, la variabilidad en las precipitaciones, el derretimiento de nieve y hielo están alterando los sistemas hidrológicos, lo cual afectaría a los recursos hídricos en términos de cantidad y calidad.

El Perú al contar con una gran diversidad territorial y riqueza ecológica puede presentar una serie de condiciones de vulnerabilidad como la presencia de ecosistemas frágiles: montañas, desiertos, bahías, humedales y bosques de neblina (MINAM, 2016). Existen procesos que están directamente relacionados con el aumento de las temperaturas a nivel global como el retroceso glaciar. Se estima que desde 1970 el Perú ha perdido más del 40% de su superficie glaciar (ANA, 2014), lo cual puede tener consecuencias en la disponibilidad hídrica futura. Así mismo, el cambio climático y la variabilidad climática pueden alterar significativamente los patrones de precipitación y evapotranspiración ya sea a nivel temporal o espacial, con impactos y vulnerabilidad de los principales ríos, quebradas y lagunas en las distintas regiones del país. Por dichas razones, es de gran importancia analizar los distintos efectos del cambio climático en la precipitación y temperatura, con el fin de obtener mayores insumos para las evaluaciones de vulnerabilidad y adaptación al cambio climático en regiones frágiles. Una forma de analizar estos efectos es mediante la detección de cambios climáticos en series históricas de temperatura, precipitación; y mediante los índices de extremos climáticos, ya que con ellos podemos establecer parámetros básicos para la planificación futura.

Teniendo en consideración que la región Arequipa es la segunda ciudad más poblada e industrializada del país, vienen siendo afectadas por las diversas amenazas originadas por el cambio climático. En este contexto, el presente documento tiene como objetivo mostrar los principales resultados de las tendencias de precipitación y temperatura desde estaciones meteorológicas representativas en las cuencas de los ríos Camaná-Majes y Ocoña; y la región Arequipa. Así como, las tendencias de sus índices de extremos.

Este documento es una herramienta indispensable de base científica para detección de cambios producto del cambio climático que sirve de base en la generación de proyecciones de del clima futuro en las regiones de interés. Asimismo, para determinar los impactos socioeconómicos y en la adecuada planificación de los recursos hídrico por parte de los tomadores de decisiones.

6.1 Tendencias climáticas de precipitación

6.1.1 Tendencia climática de la precipitación en la región Arequipa

Las tendencias de precipitación en los últimos 50 años en la región de Arequipa indican una señal de tendencia regional de aumento principalmente en las provincias altas de Caylloma durante el periodo de Avenida (diciembre-abril) y verano (DEF). Mientras, que en el periodo de estiaje (mayonoviembre) y primavera (SON) se presentan tendencias de reducción de la precipitación asociadas a su paulatina disminución en todo la región de estudio, Figuras 6-1 al 6-2.

6.1.2 Tendencia climática de la precipitación en cuenca del rio Ocoña

Con respecto a la cuenca de Ocoña, existe evidencia de una señal clara de aumento de las precipitaciones durante el periodo de avenidas y en DEF. Sin embargo, en ninguna de las escalas temporales analizadas, se encuentran aumentos significativos. En invierno época de menores a

escasas precipitaciones, la señal de tendencia es nula. Mientras que en primavera se presentan una reducción significativa de la precipitación de 60% en el periodo anual, principalmente en las localidades de Pauza y Salamanca pertenecientes a la cuenca media, Figuras 6-3 al 6-4.

6.1.3 Tendencia climática de la precipitación en la cuenca del rio Camana

En la cuenca de los ríos Camaná-Majes en verano (DEF) existen evidencias de tendencias de aumento significativo de la precipitación en los últimos 50 años, principalmente en las localidades de Madrigal, Porpera, y Chivay ubicadas en la cuenca media-alta. Mientras que tendencias de reducción de precipitación son observadas durante el periodo de estiaje en las localidades de Machahuay y Crucero Alto ubicadas en la cuenca media-alta. En el invierno (JJA) las tendencias son cercanas a cero, lo cual indica que no hay una señal clara de disminución o aumento de la precipitación significativa en este periodo; la localidad de Tisco cuenta con la mayor tendencia anual de aumento no significativo de 30%. Por otro lado, durante el primavera (SON) las tendencias son de reducción clara de la precipitación anual en 40%, Figuras 6-5 y 6-6.

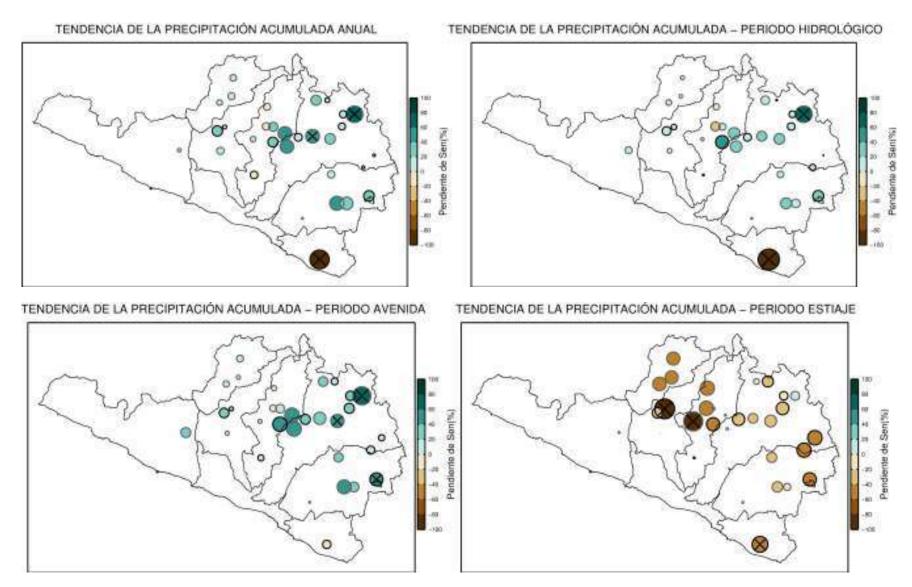


Figura 6-1 Tendencias de precipitación para los periodos anual, hidrológico, avenida y estiaje en la región de Arequipa en %.

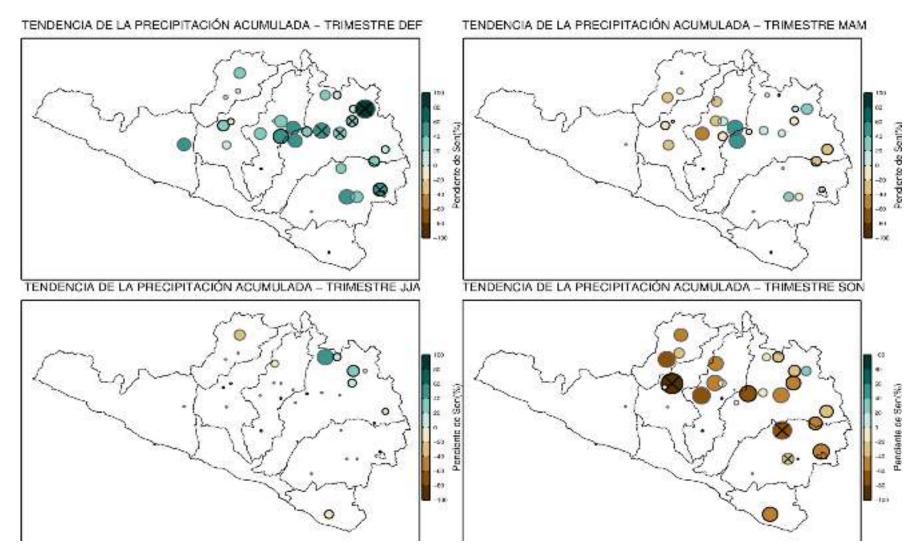


Figura 6-2 Tendencias de precipitación a nivel trimestral en la región de Arequipa en %.

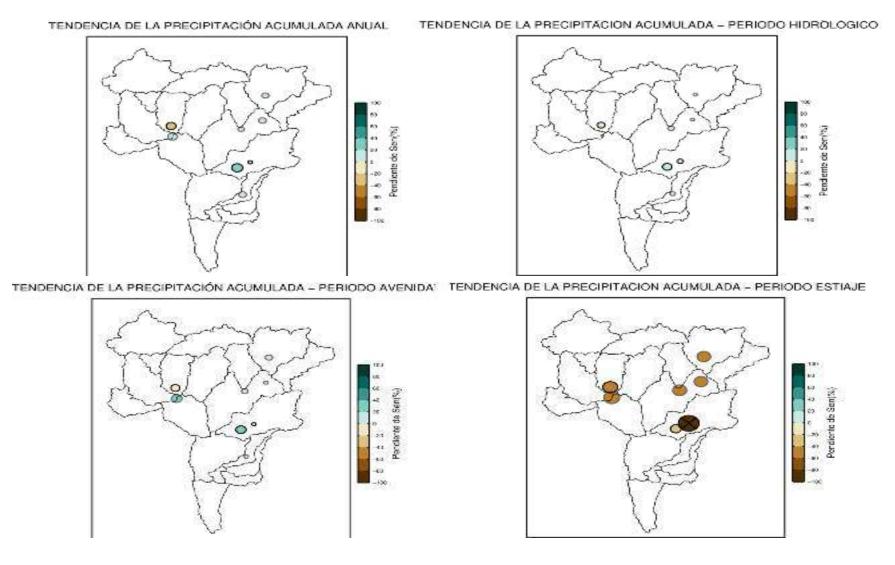


Figura 6-3 Tendencias de precipitación para los periodos anual, hidrológico, avenida y estiaje en la cuenca Ocoña en %

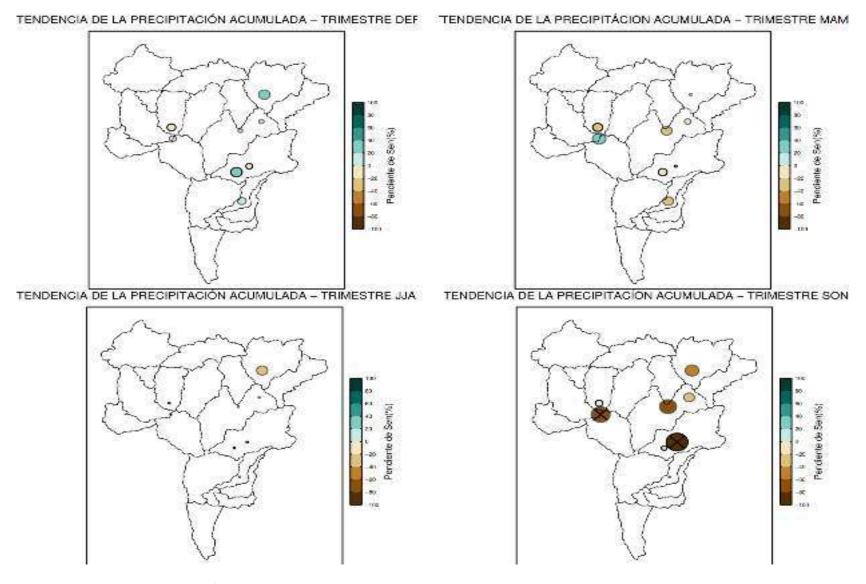


Figura 6-4 Tendencias de precipitación a nivel trimestral en la cuenca Ocoña en %

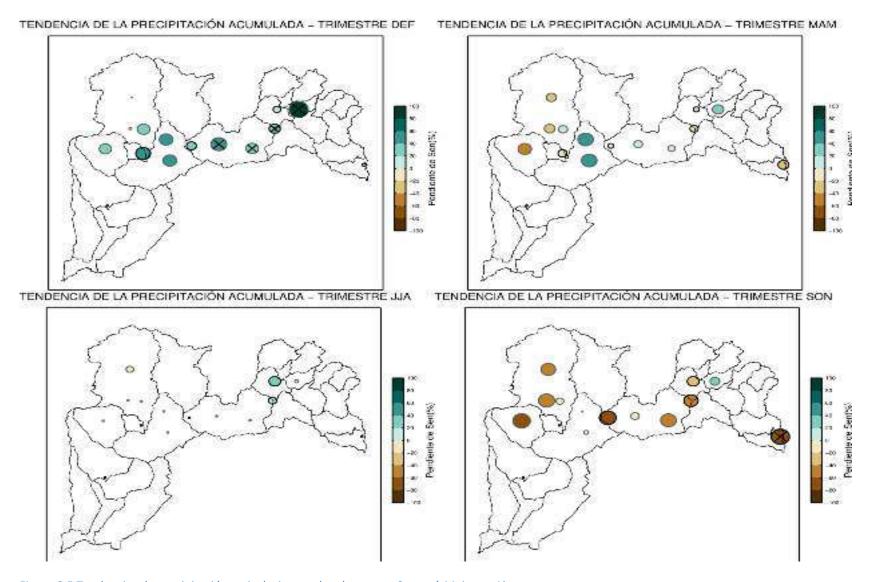


Figura 6-5 Tendencias de precipitación a nivel trimestral en la cuenca Camaná-Majes en %.

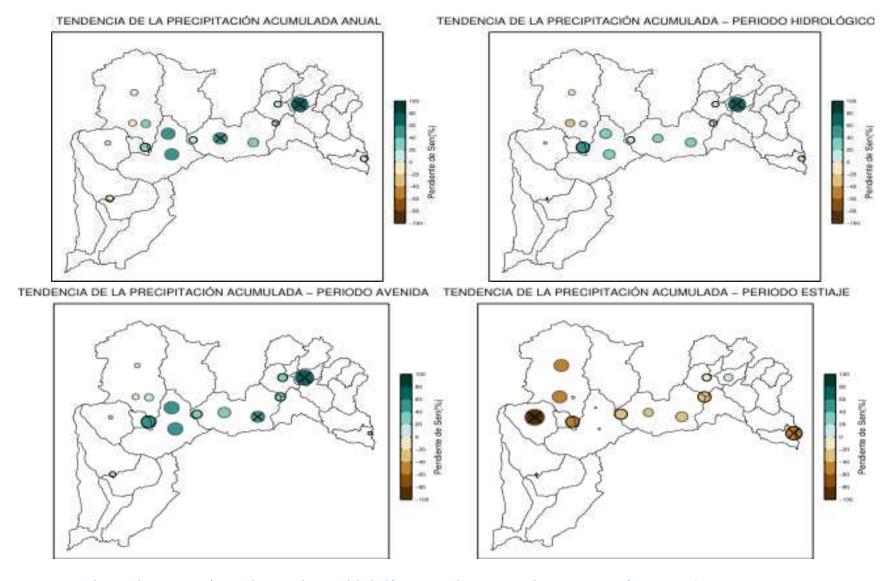


Figura 6-6 Tendencias de precipitación para los periodos anual, hidrológico, avenida y estiaje en la cuenca Camaná-Majes en %.

6.2 Tendencias climáticas de la temperatura mínima

6.2.1 Tendencia climática de la temperatura máxima en la región Arequipa

En la región Arequipa en general, las tendencias de la temperatura máxima indican una señal regional de aumento significativo en el rango de 0.2 a 0.4°C/década, en todas las escala temporales analizadas (periodo anual (enero-diciembre), año hidrológico (agosto-setiembre), período de avenidas (diciembre-abril), período de estiaje (mayo-abril), verano (DEF), otoño (MAM), invierno (JJA), primavera (SON)). La localidad de Chaparra ubicada en la provincia de Caraveli es la que presenta la tendencia más alta de la región mayor a 0.4°C/década. En la primavera SON, la magnitud de la tendencia aumenta, principalmente en la localidad de Sibayo ubicado en la provincia de Caylloma y en la localidad de La Pampilla en la provincia Arequipa, Figuras 6-7 y 6-8.

6.2.2 Tendencia climática de la temperatura máxima en la cuenca del rio Ocoña

En la cuenca del río Ocoña, dos localidades Pauza y Cotahuasi ubicadas en la cuenca media presentan series de temperaturas con un mínimo de 30 años de información. En Cotahuasi existe evidencia significativa de una señal cala de aumento de la temperatura máxima en todos los niveles temporales analizados llegando hasta de 0.5°C/década durante DEF. En tanto, la localidad de Pauza presenta una tendencia de a 0.2°C/década, llegando inclusive a ser nula durante el periodo de avenidas y en SON, Figuras 6-9 y 6-10.

6.2.3 Tendencia climática de la temperatura máxima en la Cuenca del rio Camana

En la cuenca del río Camaná-Majes, tres localidades presentan series de temperatura máxima con un mínimo de 30 años de información. Siendo, la estación de Chivay ubicada en la cuenca alta presenta una tendencia clara de aumento por encima del 0.4°C/década y en todas las escalas temporales, (Figuras 6-11 y 6-12).

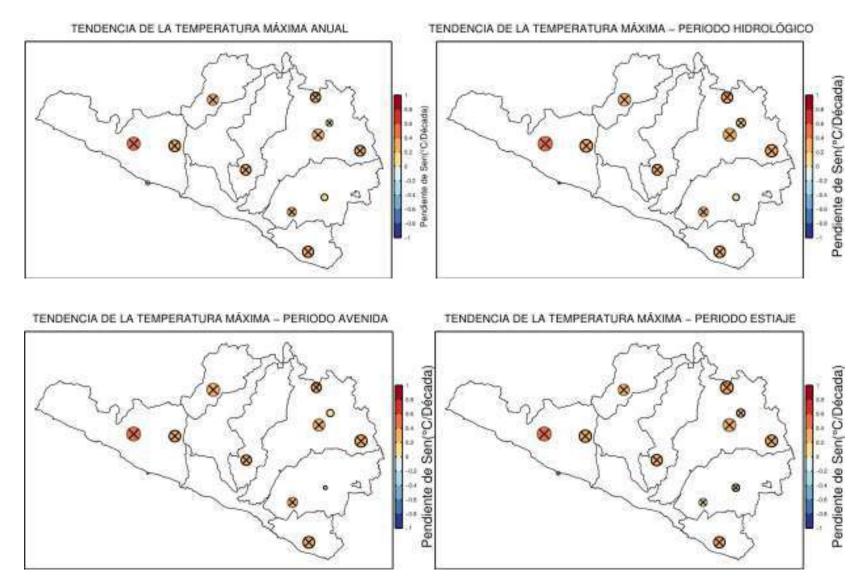


Figura 6-7 Tendencias de temperatura máxima para los periodos anual, hidrológico, avenida y estiaje en la región de Arequipa en °C/década.

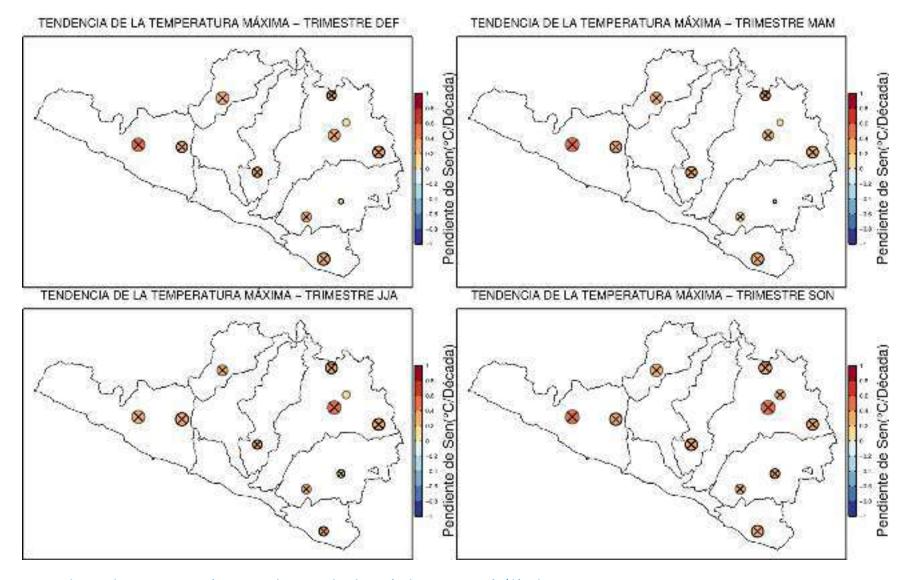


Figura 6-8 Tendencias de temperatura máxima a nivel trimestral en la región de Arequipa en °C/década.

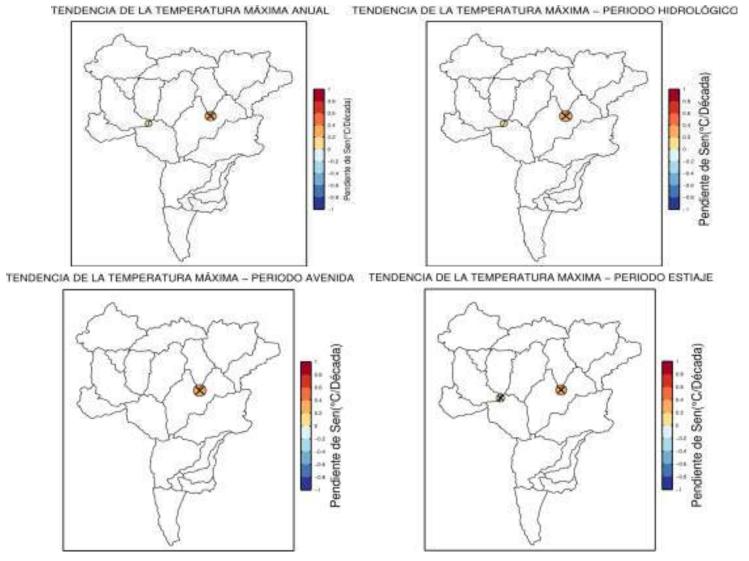


Figura 6-9 Tendencias de temperatura máxima para los periodos anual, hidrológico, avenida y estiaje en la cuenca Ocoña en°C/década.

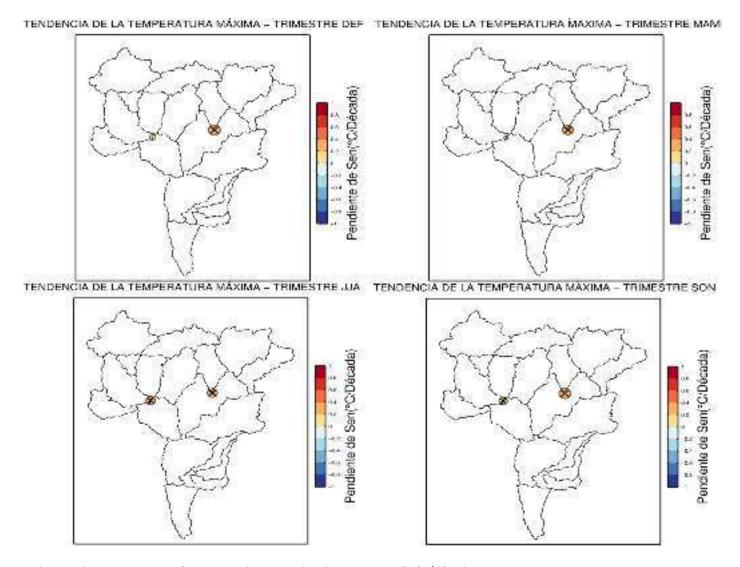


Figura 6-10 Tendencias de temperatura máxima a nivel trimestral en la cuenca Ocoña °C/década.

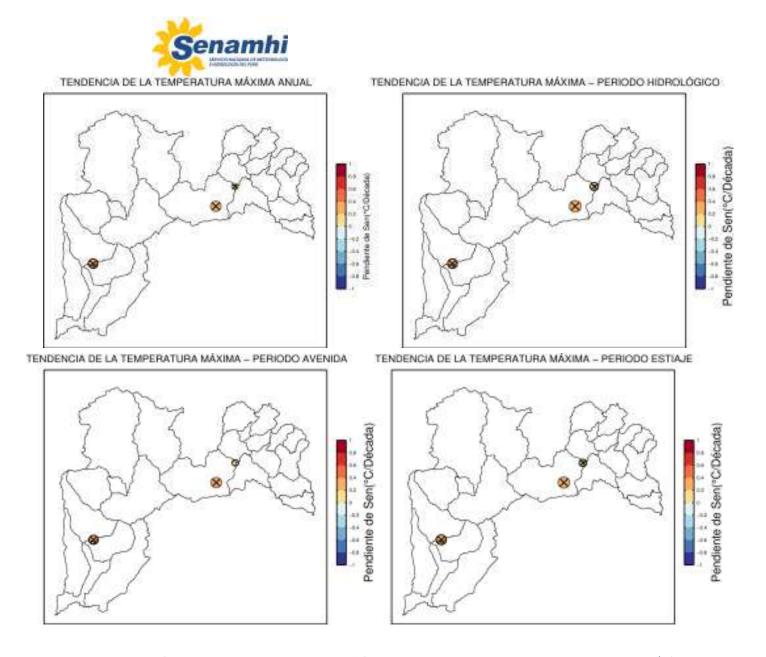


Figura 6-11 Tendencias de temperatura máxima para los periodos anual, hidrológico, avenida y estiaje en la cuenca Camana-Majes °C/década.

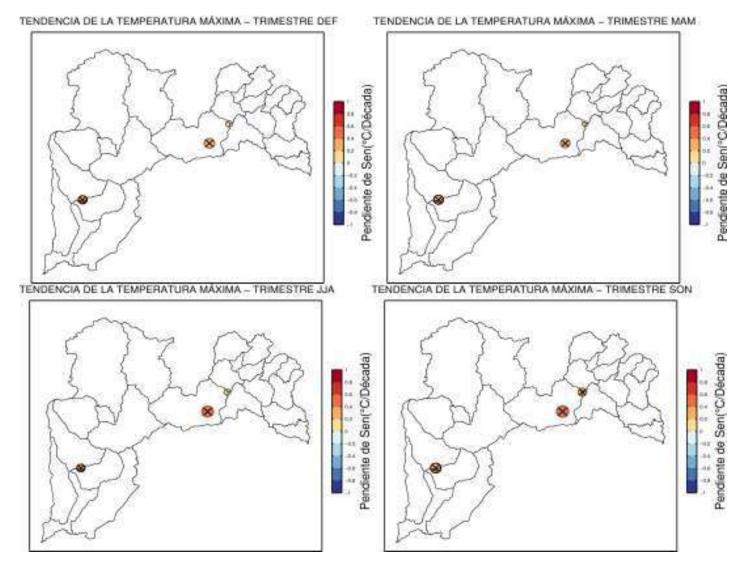


Figura 6-12 Tendencias de temperatura máxima a nivel trimestral en la cuenca de Camana-Majes en °C/década.

6.3 Tendencias climáticas de la temperatura máxima

6.3.1 Tendencias climáticas de la temperatura mínima en la región Arequipa

En Arequipa en los últimos 50 años existe evidencias de una señal regional de aumento de la temperatura mínima a razón de 0.2°C/década, en todos los periodos analizados. En invierno la tendencia es de aumento y ligeramente mayor en comparación con los demás periodos de análisis. La localidad de La Pampilla presenta el valor más alto de tendencia seguido por La Angostura que superan los 0.6°C/década en invierno, Figura 6-13 y 6-14.

6.3.2 Tendencias climáticas de la temperatura mínima en la cuenca del rio Ocoña

En la cuenca del río Ocoña, las localidades representativas de Pauza y Cotahuasi, ambas ubicadas en la cuenca media, presentan aumento no significativo de la temperatura mínima, con tendencias que van en el rango de 0 a 2°C/década en todas las escalas temporales analizadas., Figuras 6-15 y 6-16.

6.3.3 Tendencias climáticas de la temperatura mínima en la cuenca Camana

En la cuenca del río Camaná-Majes hay evidencias de una señal de tendencia de aumento significativo en tres localidades representativas en todas las escalas temporales analizadas. La localidad de Sibayo cuenta con la mayor tendencia de aumento de 0.6°C/década en invierno. Mientras que en primavera, la tendencia de aumento se reduce significativamente. Así mismo, la localidad de Ayo, ubicada en la cuenca media, presenta una tendencia de 0.6°C/década en verano, Figuras 6-17 y 6-18.

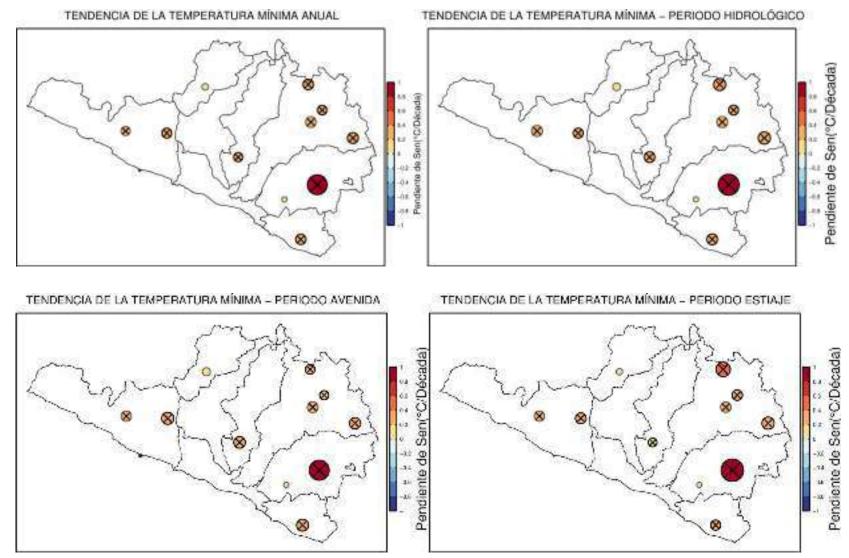


Figura 6-13. Tendencias de temperatura mínima para los periodos anual, hidrológico, avenida y estiaje en la región de Arequipa

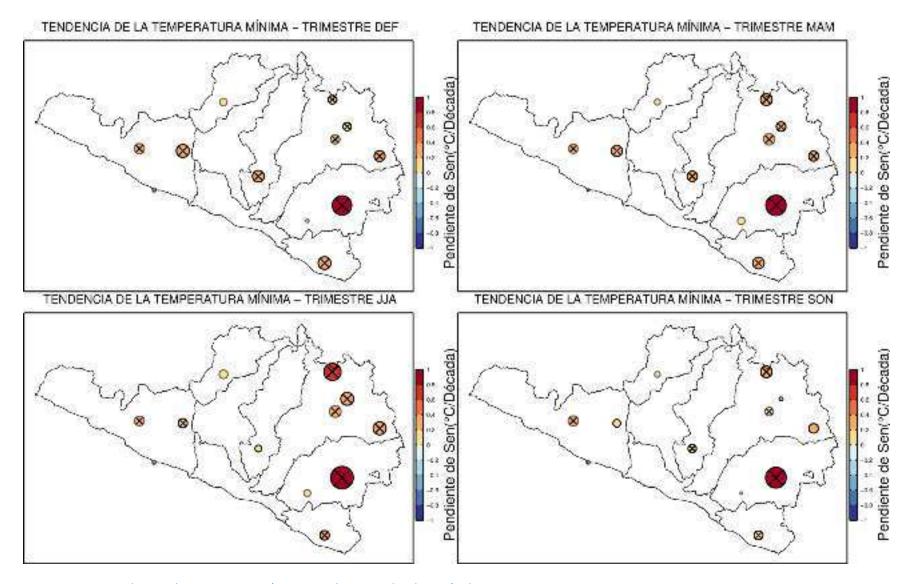


Figura 6-14. Tendencias de temperatura mínima a nivel trimestral en la región de Arequipa

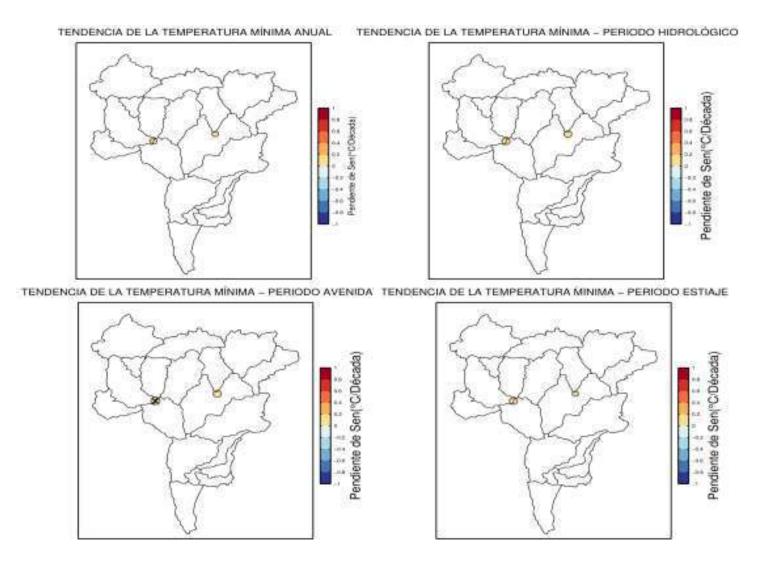


Figura 6-15. Tendencias de temperatura mínima para los periodos anual, hidrológico, avenida y estiaje en cuenca Ocoña.

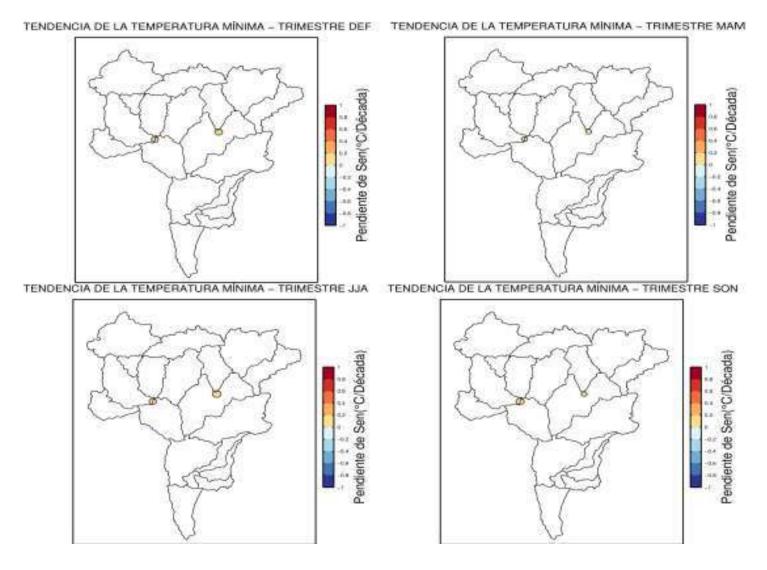


Figura 6-16. Tendencias de temperatura mínima a nivel trimestral en cuenca Ocoña.

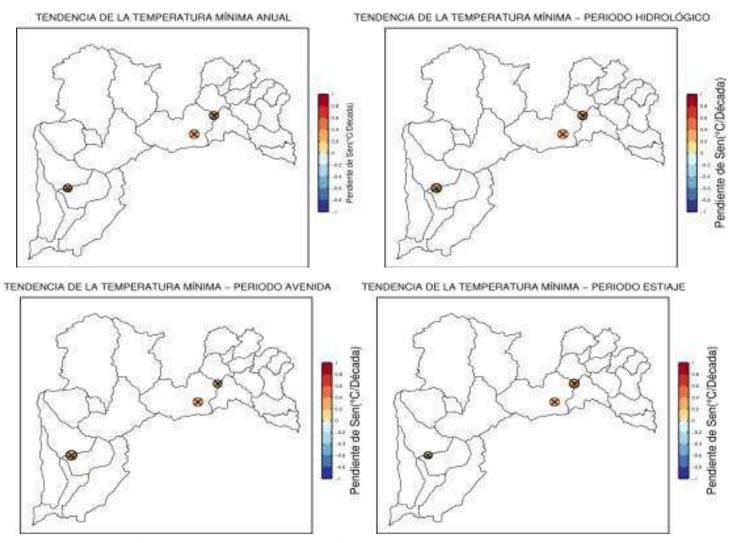


Figura 6-17. Tendencias de temperatura mínima para los periodos anual, hidrológico, avenida y estiaje en cuenca Camana-Majes

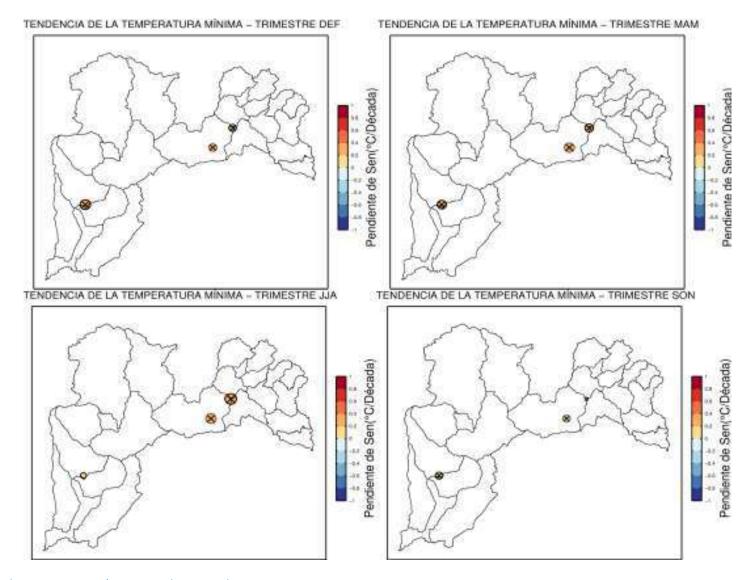


Figura 6-18. Tendencias de temperatura mínima a nivel trimestral en cuenca Camana-Majes

6.4 Indicadores de extremos climáticos

Actualmente el estudio del comportamiento histórico promedio y tendencia de los elementos principales del clima como la temperatura y precipitación son relevantes, y más aún es el estudio de la variabilidad de sus extremos, como consecuencia de la influencia del hombre sobre el clima. Los cambios en la intensidad y frecuencia de los extremos son visiblemente percibidos a través de la incidencia de sus impactos que ocasionan grandes pérdidas económicas, de infraestructura y muertes.

Los cambios en la variabilidad climática de los eventos extremos afectan a la sociedad más que los cambios en el clima medio (IPCC, 2001, citado en Uchiyama T, 2006). El interés por el análisis de los eventos extremos se ha derivado del incremento exponencial de pérdidas económicas relacionado a estos eventos, aunque para algunas regiones son aparentes los incrementos en frecuencia e intensidad en otras se ve reflejada en una disminución de los mismos (Karl, T.R. 1999).

Los eventos extremos son evaluados a través de indicadores que muestran a escala mundial una señal de aumento de días y noches cálidas, una disminución de días fríos; en tanto los indicadores basados en precipitación presentan una señal de alta variabilidad, sin embargo los aumentos significativos de precipitación se han observado principalmente en la cantidad extrema derivada de períodos húmedos y el número de eventos de precipitación fuertes (Frich, P. 2002, Skansi, et al. 2012, Donat, M.G, et al. 2012).

En este contexto, a escala regional, la evaluación de indicadores de extremos climáticos en diferentes localidades geográficas representativas de la Región Arequipa es importante y necesaria para detectar los cambios en el clima para planificación futura y aminorar daños en la población humana y su economía.

6.4.1 Indicadores de extremos climáticos en precipitación

a. Días consecutivos Secos (CDD)

En la región Arequipa los días consecutivos secos en los últimos 50 años presentan tendencias de aumento significativo principalmente en la zona costera.

En la cuenca Camaná-Majes en general los días consecutivos secos presentan una tendencia de disminución no significativa, a excepción de la estación Cabanaconde que es significativa. Esto se interpreta que existen evidencias de una reducción progresiva de los eventos continuos secos en el periodo anual.

En la cuenca Ocoña en contraste, los días consecutivos secos presentan tendencias de aumento no significativo en gran parte de sus localidades, dando a inferir un ligero aumento en de eventos secos en el periodo anual.

La distribución temporal del indicador días consecutivos secos en estaciones representativas Cabanaconde (Cuenca Camaná-Majes) y Chinchayllapa (Cuenca Ocoña), indican una señal paulatina disminución en los últimos 50 años de los días consecutivos secos en Cabanoconde, mientras que una tendencia de aumento con mayor variabilidad interanual es observada en Chinchayllapa, Figura 6 19.

b. Días consecutivos húmedos (CWD)

En la región Arequipa el número de días consecutivos húmedos indican tendencias de aumento principalmente en las provincias altas, siendo consistente con los resultados de las tendencias climáticas de precipitación promedia mostrada en el item en 6.1. La estación con la tendencia más alta es Pampa de Arrieros.

En la cuenca del río Camaná-Majes existe una predominancia de aumento significativo de los días consecutivos húmedos.

En la cuenca del río Ocoña, los días consecutivos secos tienden a ser nulos, Figura 6-20.

c. Precipitaciones intensas (R95pTOT)

En la región Arequipa existe una señal clara de aumento significativo de eventos de precipitaciones intensas en el periodo anual principalmente en sus provincias altas como en las localidades de Chinchayllapa y Caylloma.

En la cuenca del río Camaná-Majes existe una señal clara de aumento significativo de las precipitaciones intensas.

En la cuenca Ocoña los eventos de precipitaciones intensas tienden a ser nulas, a excepción de la estación Lampa que presenta disminución de 1%.

El indicador de R95pTOT representa el porcentaje acumulado de precipitaciones correspondientes a eventos consecutivos por encima del percentil 95; es decir, precipitaciones intensas, Figura 6-21.

d. Precipitaciones muy intensas (R99pTOT)

En la región Arequipa los eventos de precipitación extremadamente o muy intensas en los últimos 50 años indican una señal de alta variabilidad con aumentos y disminuciones, inclusive en localidades cercanas entre sí.

La cuenca del río Camaná-Majes presenta una ligera señal de aumento en las precipitaciones extremadamente intensas.

En la cuenca del río Ocoña predomina la disminución de eventos de precipitaciones extremadamente intensas en los últimos 50 años.

El indicador R99pTOT representa el porcentaje de acumulados correspondientes a eventos por encima del percentil 99, o precipitaciones extremadamente intensas, Figura 6-22.

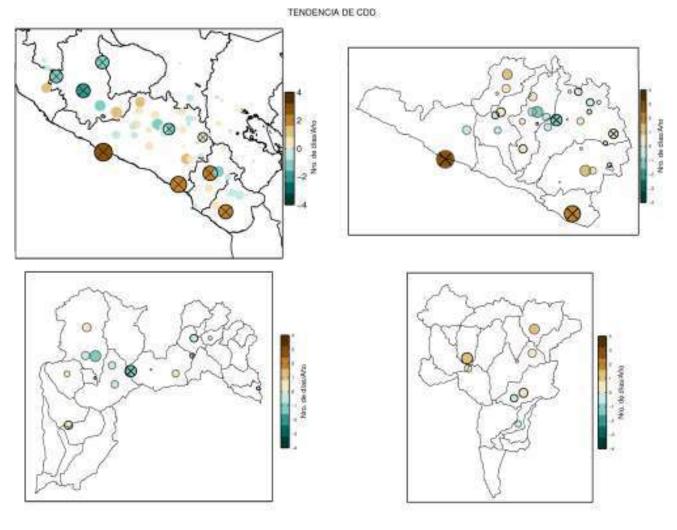
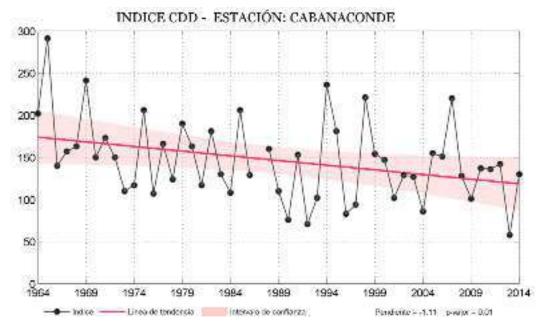



Figura 6-19. Tendencias del indicador CDD (Días Consecutivos Secos) para la región de Arequipa, cuenca del Camaná-Majes y cuenca de Ocoña

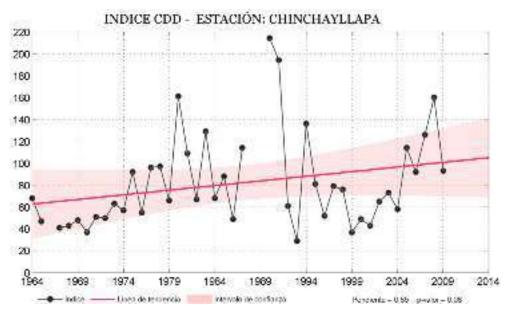


Figura 6-20. Series de CDD (Días Consecutivos Secos) para las estaciones de Cabanaconde (cuenca Camaná-Majes) y Chinchayllapa (cuenca de Ocoña), se observa una tendencia de disminución significativa de CDD en Cabanoconde a razón de 1.1 mm/año y aumento no significativo en Chinchayllapa a razón de 0.85 mm/año.

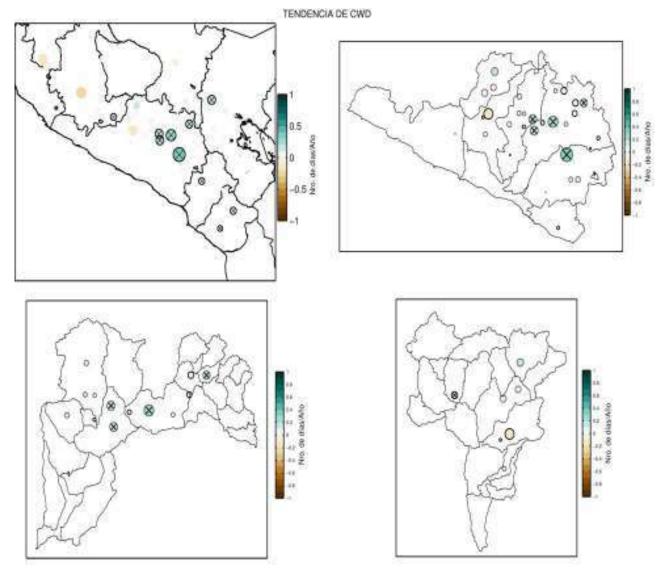


Figura 6-21. Tendencias del indicador CWD (Días Consecutivos Húmedos) para la región Arequipa, cuenca del Camaná-Majes y cuenca de Ocoña.

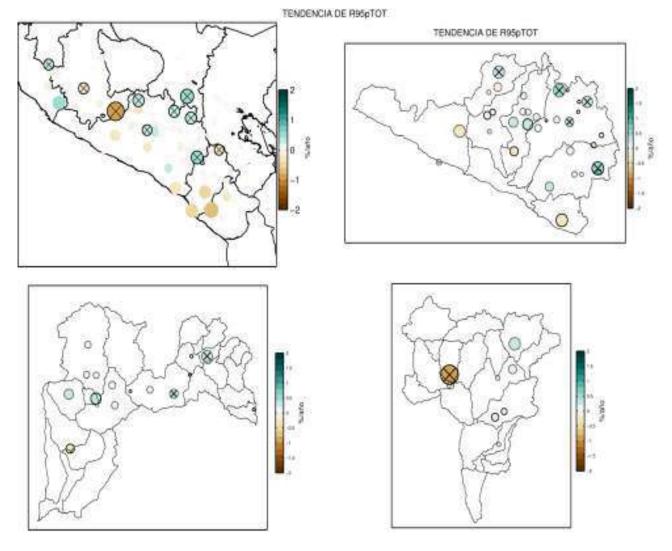
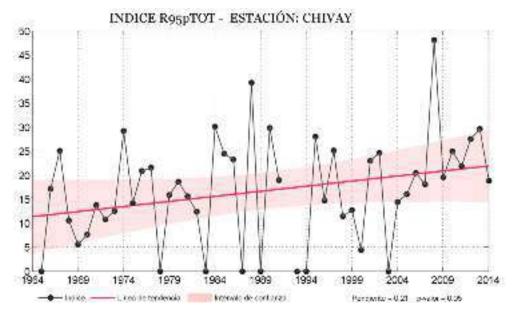



Figura 6-22. Tendencias del indicador R95pTOT (Precipitaciones intensas) para la región Arequipa, cuenca del Camaná-Majes y cuenca de Ocoña

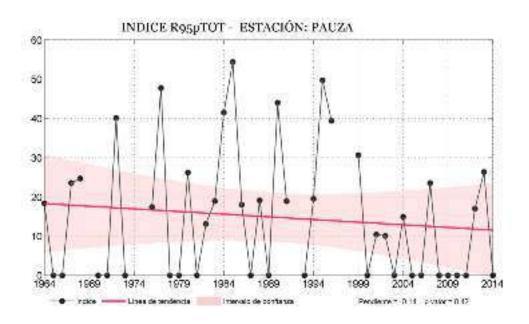


Figura 6-23. Series de R95pTOT (Precipitaciones intensas) para las estaciones de Chivay (cuenca Camaná-Majes) y Pauza (cuenca de Ocoña), se observa una tendencia de aumento no significativo de las precipitaciones intensas en Chivay a razón de 0.21°C/año y una tendencia de disminución no significativa en Pauza a razón de 0.14°C/año.

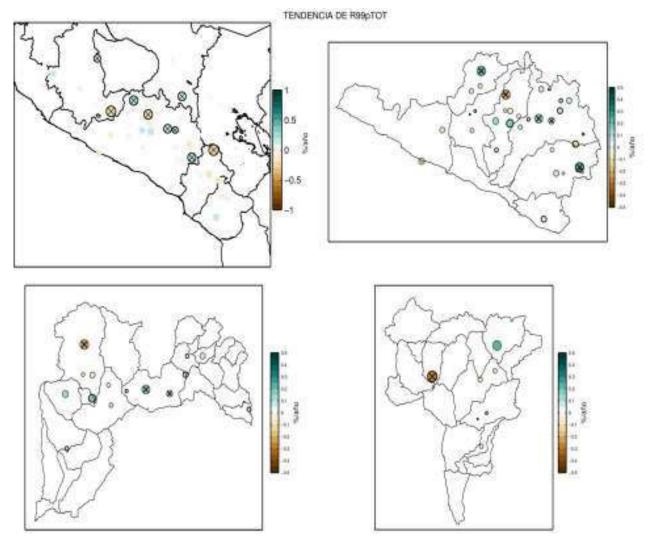


Figura 6-24. Tendencias del indicador R99pTOT (precipitaciones extremadamente o muy intensas) para la región de estudio, región de Arequipa, cuenca del Camaná-Majes y cuenca de Ocoña

6.4.2 Indicadores de extremos climáticos de temperatura máxima

a. Días fríos (tx10p)

En Arequipa los días fríos presentan una señal regional de disminución significativa en los últimos 50 años, Figura 6-25.

En la Cuenca del río Camaná-Majes, las localidades representativas de Sibayo, Chivay y Aplao indican una tendencia de disminución significativa de los días fríos.

Asimismo, en la Cuenca del río Ocoña, las localidades representativas de Cotahuasi y Pauza indican una tendencia de disminución significativa de los días fríos.

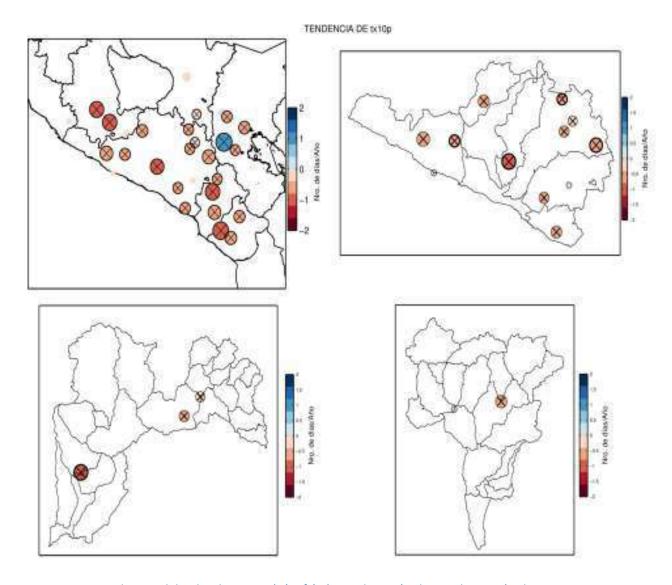
El indicador tx10p, llamado días fríos, representa el número total de días al año con temperaturas máximas por debajo del percentil 10.

b. Días cálidos (tx90p)

En la región Arequipa, los días cálidos presentan una señal de aumento en todas las localidades del área de estudio. La tasa de aumento más alto se presenta en la localidad de Chaparra siendo mayor a 4 días/año.

En la Cuenca del río Camaná-Majes, tanto en las localidades de Chivay como en Pauza, es notorio el aumento de los días cálidos en los últimos 50 años. A escala temporal los días más cálidos ocurrieron en 1983 y 1998, asociados a eventos de El Niño Oscilación Sur.

El indicador tx90p mide el número de días en que la temperatura máxima superó el percentil 90, días calidos.



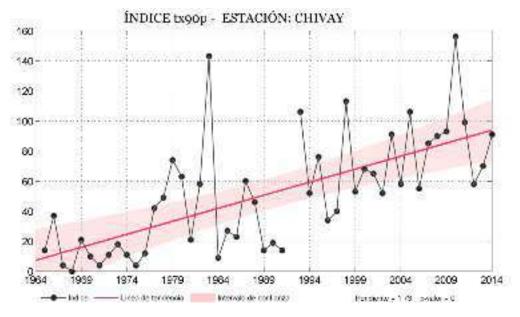

Figura 6-25. Tendencias del indicador tx10p (Días fríos) para la región de estudio, región de Arequipa, cuenca del Camaná-Majes y cuenca de Ocoña.

Figura 6-26. Tendencias del indicador tx90p (Días cálidos) para la región de estudio, región de Arequipa, cuenca del Camaná-Majes y cuenca de Ocoña.

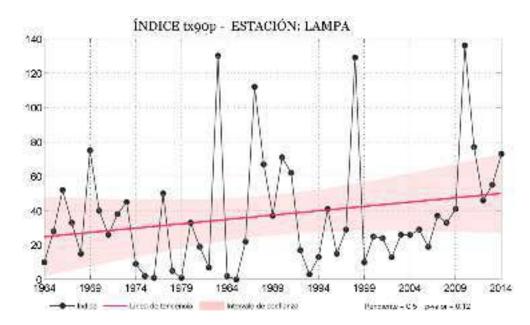


Figura 6-27. Series de tx90p (Días cálidos) para las estaciones de Chivay (cuenca Camaná-Majes) y Lampa (cuenca de Ocoña), se observa una tendencia de aumento significativo del número de días cálidos en Chivay a razón de 2 días/año y aumento no significativo a razón de 0.5 días/año.

6.4.3 Indicadores de extremos climáticos de temperatura mínima

a. Noches frías (tx10p)

En la región Arequipa existe evidencias de una señal de disminución de las noches frías. Las tendencias de una fuerte disminución de las noches frías se presentan principalmente en las localidades de La Pampilla, Cotahuasi y Caravelí.

En la Cuenca del río Camaná-Majes, las localidades representativas de Sibayo, Chivay y Aplao indican en general una tendencia de disminución de las noches frías.

Asimismo, en la Cuenca del río Ocoña, las localidades representativas de Cotahuasi y Pauza indican en general una tendencia de disminución de las noches frías.

b. Noches cálidas (tx90p)

En Arequipa existen evidencias de una señal clara de aumento regional significativo de las noches cálidas hasta en 2 a 3 días/año.

En la Cuenca del río Camaná-Majes, las localidades representativas de Sibayo, Chivay y Aplao indican en general una tendencia de aumento significativo de las noches cálidas.

En la cuenca del río Ocoña, las tendencias son de aumento no significativo de las noches cálidas en las localidades de Cotahuasi y Pauza. A escala temporal, las noches cálidas se han presentado principalmente en eventos asociados a El Niño-Oscilación Sur.

El indicador tx90p representa el número de eventos en que las temperaturas mínimas estuvieron por encima del percentil 90, por esta razón se llaman también noches cálidas.

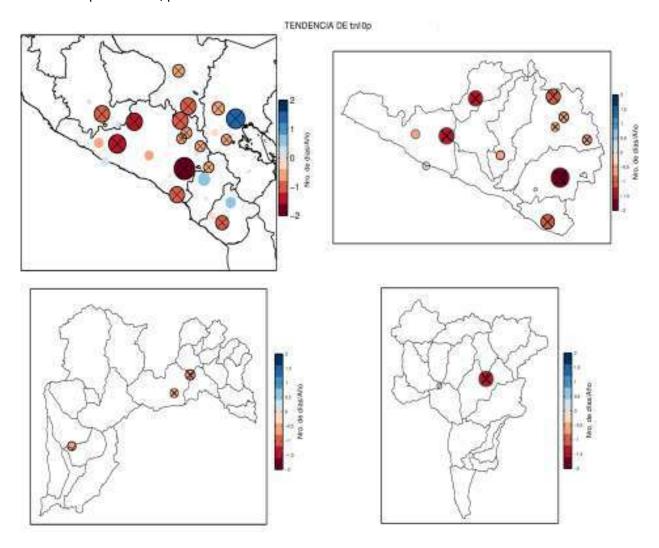


Figura 6-28. Tendencias del indicador tn10p (Noche frías) para la región de estudio, región de Arequipa, cuenca del Camaná-Majes y cuenca de Ocoña.

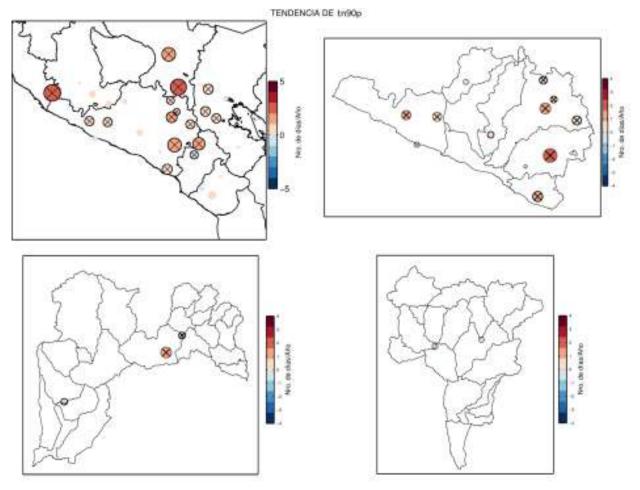
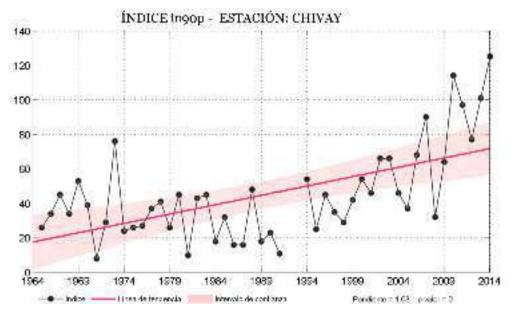



Figura 6-29. Tendencias del indicador tn90p (Noches cálidas) para la región de estudio, región de Arequipa, cuenca del Camaná-Majes y cuenca de Ocoña.

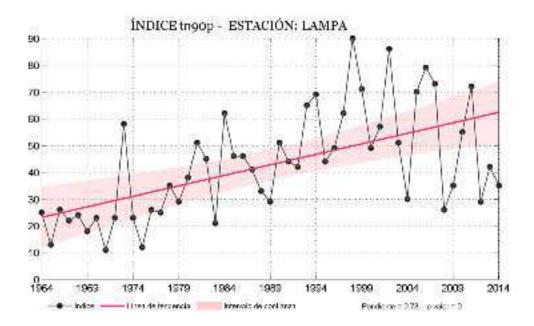


Figura 6-30. Series de tn90p (Noches cálidas) para las estaciones de Chivay (cuenca Camaná-Majes) y Lampa (cuenca de Ocoña), se observa una tendencia de aumento significativo de las noches frías en Chivay a razón de 1 día/año y de 0.8 día/año en Lampa.

6.5 Conclusiones

6.5.1 Tendencias del clima medio de precipitación y temperatura

La tendencia de precipitación indican una señal de aumento significativo en los últimos 50 años en el periodo de avenida (diciembre-abril) y verano (diciembre-febrero), principalmente en localidades ubicadas en las zonas altas de la región Arequipa. Estas tendencias de aumento son significativas en estaciones de la cuenca de Camaná-Majes, mientras que en la cuenca de Ocoña son de aumento no significativo. De otro lado, se identifica una señal de reducción de la precipitación en primavera (setiembre-noviembre), lo cual estaría posiblemente asociado a un retraso del inicio de las precipitaciones y como consecuencia el corrimiento del periodo de lluvias con aumento de su concentración en verano (diciembre-febrero).

La tendencia de la temperatura máxima indica una señal regional de aumento significativo en los últimos 50 años en la región Arequipa. La tasa de aumento más alta se identificó en primavera (setiembre-noviembre). En lo que respecta a la temperatura máxima anual, existe evidencias de un aumento regional significativo de 0.1 a 0.4°C/Década, es decir de 0.5°C a 2°C en los últimos 50 años.

La tendencia de la temperatura mínima indica una señal regional de aumento significativo en los últimos 50 años en la región Arequipa y ligeramente más alto en relación a la tendencia de la temperatura máxima. La tasa de aumento más alta se identificó en invierno (junio-agosto). Las tendencias de temperatura mínima anual indican aumentos significativos a nivel regional de 0.1 a 0.3°C/Década, es decir de 0.5°C a 1.5°C en los últimos 50 años.

6.5.2 Tendencias de indicadores de extremos climáticos de precipitación y temperatura

Existe evidencias de la reducción de los días consecutivos secos (CDD) de precipitación en las zonas altas de la región Arequipa a diferencia de las localidades ubicadas en costa que presentan aumentos. En la cuenca de Ocoña los días consecutivos secos están aumentando.

Los días consecutivos húmedos (CWD) presentan tendencias de incrementos en la cuenca de Camaná-Majes mientras que en la de Ocoña no se presenta una señal significativa.

Los eventos de precipitación extrema en el periodo anual indican aumentos significativos en la cuenca Camaná-Majes, mientras que en la cuenca de Ocoña, se presentan tendencias nulas a reducción ligera.

Los extremos de temperaturas máximas y mínimas, indican aumento de los días cálidos y noches cálidas en gran parte de la región Arequipa, a diferencia de los días fríos y noches frías que muestran disminución importante.

Referencias Bibliográficas

ANA, 2014. Inventario nacional de glaciares y lagunas. Unidad de Glaciología y Recursos Hídricos. Huaraz: Autoridad Nacional del Agua.

CIIFEN, 2014. Metodología para la Estimación de Vulnerabilidad en Ecuador, Perú y Bolivia, Proyecto Información de cambio climático y biodiversidad para el fomento de políticas públicas de conservación y adaptación en la región de los Andes Tropicales, p 1-67

Cantor, D; Ochoa, A, 2011. Señales de cambio climático en series de lluvia en Antioquia. Conference: IX Congreso Colombiano de Meteorología, At Bogotá, Colombia.

IPCC (Intergovernmental Panel on Climate Change), 2007b. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, Iland III to the Fourth Assessment Report of IPCC, Geneva, Switzerland, 104pp.

IPCC (Intergovernmental Panel on Climate Change), 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC, Cambridge University Press, and 1535 pp.

Mestre, O., Domonkos, P., Picard, F., Auer, I., Robin, S., Lebarbier, É. Boehm, R., Aguilar, E., Guijarro, J., Vertachnik, G., Klancar, M., Dubuisson, B., Stepanek, P. (2013). HOMER: homogenization software - methods and applications. Időjárás, 117 (1), 47 - 67.

MINAM, 2016. El Perú y el Cambio Climático. Tercera Comunicación Nacional del Perú a la Convención Marco de las Naciones Unidas sobre Cambio Climático. Lima: Ministerio del Ambiente.

Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, 63:1379-1389.

SENAMHI, 2009. Escenarios climáticos en el Perú para el año 2030. Lima: Servicio Nacional de Meteorología e Hidrología.

Zahumensky I, 2004. Guidelines on Quality Control Procedures for Data from Automatic Weather Stations. World Meteorological Organization: Comission for instrument and methods of observation.

Anexo – Capítulo VI

Tabla 6-1 Tendencia de precipitación histórica expresada en porcentaje (%) – Región Arequipa

		TENDENCIA DE L	A PRECIPITACION HIST	TORICA EXPRES	ADA EN PORC	ENAJE (%)					
Estación	Latitud (°)	Longitud (°)	Altitud (msnm)	P. Hidrol.	P. Aven.	P. Estiaje	ANUAL	DEF	MAM	JJA	SON
Imata	-15.84	-71.09	4519	0	10	-50	-2	14	-28	-9	-38
Crucero_Alto	-15.76	-70.92	4508	-11	-4	-60	-13	3	-28	0	-77
Chinchayllapa	-14.92	-72.73	4497	-4	12	-41	11	29	1	-28	-41
Pillones	-15.98	-71.21	4455	10	16	-49	2	26	-23	0	-42
Las_Salinas	-16.32	-71.15	4378	30	41	-42	27	43	9	0	-58
Janacancha (Caylloma)	-15.18	-71.77	4299	18	22	-8	25	23	-5	58	-15
La_Angostura	-15.18	-71.63	4265	1	12	-29	6	14	1	15	-28
Porpera	-15.35	-71.32	4195	68	78	19	68	85	30	-4	22
Tisco	-15.35	-71.45	4175	12	21	-17	13	14	9	31	-33
Sibayo	-15.49	-71.46	3806	14	25	-39	12	30	-16	16	-49
Orcopampa	-15.26	-72.34	3779	-10	-7	-48	-13	0	-24	-13	-50
Pampa_De_Arrieros	-16.06	-71.59	3715	11	21	-25	14	24	2	0	-79
Chivay	-15.64	-71.60	3644	28	43	-34	28	38	13	0	-57
Andahua	-15.49	-72.35	3587	-21	-11	-48	-14	-2	-27	0	-60
Pullhuay_(Ayahuasi)	-15.14	-72.75	3455	-4	-4	-41	12	6	-10	0	-25
Cabanaconde	-15.62	-71.97	3331	15	24	-37	15	23	-8	0	-64
Huambo	-15.73	-72.11	3319	33	51	-1	44	43	55	0	-5
Madrigal	-15.61	-71.81	3276	24	36	-22	46	58	17	0	-16
Salamanca	-15.50	-72.83	3203	-7	4	-94	-4	-11	-2	0	-103
Machahuay	-15.65	-72.50	3150	3	4	-87	8	34	-42	0	-71
Yanaquihua	-15.78	-72.88	3130	-6	-4	0	13	17	-25	0	0
Chachas	-15.50	-72.27	3130	13	18	-2	21	37	20	0	-14
Chiguata	-16.41	-71.41	2902	18	24	-13	39	33	-14	0	0
Lampa	-15.18	-73.35	2880	-13	-18	-47	-21	-17	-22	0	-13
Cotahuasi	-15.21	-72.89	2678	9	10	-43	8	5	-25	0	-65
Pauza	-15.28	-73.34	2484	2	24	-55	19	11	40	0	-80
Choco	-15.58	-72.13	2428	33	51	0	45	43	55	0	0
La_Pampilla	-16.41	-71.52	2365	29	46	-26	49	53	22	0	-32
Chichas	-15.55	-72.92	2161	19	22	-26	27	30	-18	0	-8
Ayo	-15.68	-72.27	1956	42	49	-42	25	52	-19	0	0
Caraveli	-15.78	-73.36	1758	12	24	0	4	40	0	0	0
La_Joya	-16.58	-71.92	1276	0	0	0	0	0	0	0	0
Chaparra	-15.75	-73.87	1140	-3	-11	0	3	-7	0	0	0
Aplao	-16.07	-72.49	645	0	9	0	-15	0	0	0	0
Punta_Atico	-16.23	-73.69	20	0	0	0	0	0	0	0	0

Tabla 6-2 Tendencia de precipitación histórica expresada en porcentaje (%)- Cuenca del rio Ocoña

Longitud (°) -72.73 -71.32 -72.75	Altitud (msnm) 4497 4195 3455	P. Hidrol4 68 -4	P. Aven. 12 78 -4	P. Estiaje -41 19 -41	11 68	DEF 29 85	1 30	-28 -4	-41 22
-71.32 -72.75	4195 3455	68	78	19	68	85		_	
-72.75	3455							-4	22
_		-4	-4	<i>-1</i> 11	12	_			
			•	-41	12	6	-10	0	-25
-72.83	3203	-7	4	-94	-4	-11	-2	0	-103
-72.88	3130	-6	-4	0	13	17	-25	0	0
-73.35	2880	-13	-18	-47	-21	-17	-22	0	-13
-72.89	2678	9	10	-43	8	5	-25	0	-65
-73.34	2484	2	24	-55	19	11	40	0	-80
-72.92	2161	19	22	-26	27	30	-18	0	-8
	-72.88 -73.35 -72.89 -73.34	-72.88 3130 -73.35 2880 -72.89 2678 -73.34 2484	-72.88 3130 -6 -73.35 2880 -13 -72.89 2678 9 -73.34 2484 2	-72.88 3130 -6 -4 -73.35 2880 -13 -18 -72.89 2678 9 10 -73.34 2484 2 24	-72.88 3130 -6 -4 0 -73.35 2880 -13 -18 -47 -72.89 2678 9 10 -43 -73.34 2484 2 24 -55	-72.88 3130 -6 -4 0 13 -73.35 2880 -13 -18 -47 -21 -72.89 2678 9 10 -43 8 -73.34 2484 2 24 -55 19	-72.88 3130 -6 -4 0 13 17 -73.35 2880 -13 -18 -47 -21 -17 -72.89 2678 9 10 -43 8 5 -73.34 2484 2 24 -55 19 11	-72.88 3130 -6 -4 0 13 17 -25 -73.35 2880 -13 -18 -47 -21 -17 -22 -72.89 2678 9 10 -43 8 5 -25 -73.34 2484 2 24 -55 19 11 40	-72.88 3130 -6 -4 0 13 17 -25 0 -73.35 2880 -13 -18 -47 -21 -17 -22 0 -72.89 2678 9 10 -43 8 5 -25 0 -73.34 2484 2 24 -55 19 11 40 0

Tabla 6-3 Tendencia de precipitación histórica expresada en porcentaje (%)- Cuenca del rio Camana

		TENDENCI	A DE LA PRECIPITACIO	N HISTORICA EX	(PRESADA EN	PORCENAJE (%))				
Estación	Latitud (°)	Longitud (°)	Altitud (msnm)	P. Hidrol.	P. Aven.	P. Estiaje	ANUAL	DEF	MAM	JJA	SON
Crucero_Alto	-15.76	-70.92	4508	-11	-4	-60	-13	3	-28	0	-77
Tisco	-15.35	-71.45	4175	12	21	-17	13	14	9	31	-33
Sibayo	-15.49	-71.46	3806	14	25	-39	12	30	-16	16	-49
Orcopampa	-15.26	-72.34	3779	-10	-7	-48	-13	0	-24	-13	-50
Chivay	-15.64	-71.60	3644	28	43	-34	28	38	13	0	-57
Andahua	-15.49	-72.35	3587	-21	-11	-48	-14	-2	-27	0	-60
Cabanaconde	-15.62	-71.97	3331	15	24	-37	15	23	-8	0	-64
Huambo	-15.73	-72.11	3319	33	51	-1	44	43	55	0	-5
Madrigal	-15.61	-71.81	3276	24	36	-22	46	58	17	0	-16
Machahuay	-15.65	-72.50	3150	3	4	-87	8	34	-42	0	-71
Chachas	-15.50	-72.27	3130	13	18	-2	21	37	20	0	-14
Choco	-15.58	-72.13	2428	33	51	0	45	43	55	0	0
Ayo	-15.68	-72.27	1956	42	49	-42	25	52	-19	0	0
Aplao	-16.07	-72.49	645	0	9	0	-15	0	0	0	0

Tabla 6-4 Tendencia de la temperatura máxima histórica expresada en porcentaje (%)- Region Arequipa

Estación	Latitud (°)	Longitud (°)	Altitud (msnm)	P. Hidrol.	P. Aven.	P. Estiaje	ANUAL	DEF	MAM	JJA	SOI
lmata	-15.84	-71.09	4519	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.0
_a_Angostura	-15.18	-71.63	4265	0.03	0.02	0.04	0.03	0.02	0.02	0.03	0.0
Sibayo	-15.49	-71.46	3806	0.02	0.01	0.02	0.01	0.01	0.01	0.01	0.0
Chivay	-15.64	-71.60	3644	0.04	0.03	0.04	0.04	0.03	0.03	0.04	0.0
Cotahuasi	-15.21	-72.89	2678	0.04	0.04	0.03	0.03	0.04	0.03	0.03	0.0
Pauza	-15.28	-73.34	2484	0.01	0.00	0.02	0.01	0.01	0.01	0.02	0.0
La_Pampilla	-16.41	-71.52	2365	0.01	0.00	0.01	0.01	0.01	0.00	0.01	0.0
Caraveli	-15.78	-73.36	1758	0.04	0.03	0.03	0.04	0.03	0.03	0.04	0.0
La_Joya	-16.58	-71.92	1276	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.0
Chaparra	-15.75	-73.87	1140	0.05	0.04	0.04	0.04	0.04	0.04	0.04	0.0
Aplao	-16.07	-72.49	645	0.03	0.02	0.03	0.03	0.02	0.03	0.02	0.0
Punta Atico	-16.23	-73.69	20	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.0

Tabla 6-5 Tendencia de la temperatura máxima histórica expresada en porcentaje (%)- Cuenca del rio Ocoña

		TENDENCIA	A DE LA TEMPERATURA	MAXIMA HISTO	ORICA EXPRES	ADA EN PORCE	NAJE (%)				
Estación	Latitud (°)	Longitud (°)	Altitud (msnm)	P. Hidrol.	P. Aven.	P. Estiaje	ANUAL	DEF	MAM	JJA	SON
Cotahuasi	-15.21	-72.89	2678	0.04	0.04	0.03	0.03	0.04	0.03	0.03	0.04
Pauza	-15.28	-73.34	2484	0.01	0.00	0.02	0.01	0.01	0.01	0.02	0.02

Tabla 6-6 Tendencia de la temperatura maxima histórica expresada en porcentaje (%)- Cuenca del rio Camana

		TENDENC	IA DE LA TEMPERATUR	A MAXIMA HIST	ORICA EXPRES	SADA EN PORCE	ENAJE (%)				
Estación	Latitud (°)	Longitud (°)	Altitud (msnm)	P. Hidrol.	P. Aven.	P. Estiaje	ANUAL	DEF	MAM	JJA	SON
Sibayo	-15.49	-71.46	3806	0.02	0.01	0.02	0.01	0.01	0.01	0.01	0.02
Chivay	-15.64	-71.60	3644	0.04	0.03	0.04	0.04	0.03	0.03	0.04	0.05
Aplao	-16.07	-72.49	645	0.03	0.02	0.03	0.03	0.02	0.03	0.02	0.03

Tabla 6-7 Tendencia de la temperatura mínima histórica expresada en porcentaje (%)- Región Arequipa

Estación	Latitud (°)	Longitud (°)	Altitud (msnm)	P. Hidrol.	P. Aven.	P. Estiaje	ANUAL	DEF	MAM	JJA	SO
Imata	-15.84	-71.09	4519	0.03	0.03	0.03	0.03	0.03	0.02	0.04	0.0
La_Angostura	-15.18	-71.63	4265	0.03	0.02	0.05	0.03	0.02	0.03	0.07	0.0
Sibayo	-15.49	-71.46	3806	0.02	0.02	0.02	0.02	0.02	0.02	0.04	0.0
Chivay	-15.64	-71.60	3644	0.03	0.03	0.02	0.03	0.02	0.03	0.03	0.0
Cotahuasi	-15.21	-72.89	2678	0.01	0.02	0.01	0.01	0.01	0.01	0.02	0.0
Pauza	-15.28	-73.34	2484	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.0
La_Pampilla	-16.41	-71.52	2365	0.10	0.09	0.11	0.10	0.09	0.10	0.12	0.1
Caraveli	-15.78	-73.36	1758	0.02	0.03	0.03	0.03	0.04	0.03	0.02	0.0
La_Joya	-16.58	-71.92	1276	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.0
Chaparra	-15.75	-73.87	1140	0.03	0.02	0.02	0.02	0.03	0.02	0.02	0.0
Aplao	-16.07	-72.49	645	0.03	0.03	0.02	0.02	0.03	0.03	0.01	0.0
Punta Atico	-16.23	-73.69	20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0

Tabla 6-8 Tendencia de la temperatura mínima histórica expresada en porcentaje (%)- Cuenca del rio Ocoña

TENDENCIA DE LA TEMPERATURA MINIMA HISTORICA EXPRESADA EN PORCENAJE (%)											
Estación	Latitud (°)	Longitud (°)	Altitud (msnm)	P. Hidrol.	P. Aven.	P. Estiaje	ANUAL	DEF	MAM	JJA	SON
Cotahuasi	-15.21	-72.89	2678	0.01	0.02	0.01	0.01	0.01	0.01	0.02	0.01
Pauza	-15.28	-73.34	2484	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.02

Tabla 6-9 Tendencia de la temperatura mínima histórica expresada en porcentaje (%)- Cuenca del rio Camana

	TENDENCIA DE LA TEMPERATURA MINIMA HISTORICA EXPRESADA EN PORCENAJE (%)											
ud (°) Longitu	d (°) Altitud (msnr	m) P. Hidrol.	P. Aven.	P. Estiaje	ANUAL	DEF	MAM	JJA	SON			
.49 -71.4	6 3806	0.02	0.02	0.02	0.02	0.02	0.02	0.04	0.00			
.64 -71.6	0 3644	0.03	0.03	0.02	0.03	0.02	0.03	0.03	0.02			
.07 -72.4	9 645	0.03	0.03	0.02	0.02	0.03	0.03	0.01	0.02			
	5.49 -71.40 5.64 -71.60	5.49 -71.46 3806 5.64 -71.60 3644	5.49 -71.46 3806 0.02 5.64 -71.60 3644 0.03	5.49 -71.46 3806 0.02 0.02 5.64 -71.60 3644 0.03 0.03	5.49 -71.46 3806 0.02 0.02 0.02 5.64 -71.60 3644 0.03 0.03 0.02	5.49 -71.46 3806 0.02 0.02 0.02 0.02 5.64 -71.60 3644 0.03 0.03 0.02 0.03	5.49 -71.46 3806 0.02 0.02 0.02 0.02 0.02 5.64 -71.60 3644 0.03 0.03 0.02 0.03 0.02	5.49 -71.46 3806 0.02 0.02 0.02 0.02 0.02 0.02 0.02 5.64 -71.60 3644 0.03 0.03 0.02 0.03 0.02 0.03	5.49 -71.46 3806 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 5.64 -71.60 3644 0.03 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.03			

CAPÍTULO VII

El modelamiento matemático para la generacion de la oferta de agua en el sistema hídrico de las cuencas de los ríos Ocoña y Camaná-Majes

7. Modelamiento para la generación de la oferta de agua

En el presente Capítulo se describe y presenta los resultados del modelamiento hidrológico realizado en las cuencas de los ríos Ocoña y Camaná-Majes utilizando el Modelo de base física SWAT (Soil & Water Assesment Tool) el cual fue calibrado y validado para caracterizar el balance hídrico en sus diferentes fases del ciclo del agua de la cuenca y subcuencas; así como la cuantificación de los caudales de las subcuencas a paso de tiempo diario. Este modelo hidrológico así calibrado será utilizado para realizar las simulaciones hidrológicas de la oferta hídrica bajo Escenarios de Cambio Climático.

7.1 El modelamiento hidrológico con SWAT

7.1.1. El modelo SWAT

El modelo hidrológico SWAT (*Soil Water Assessment Tools*) es una herramienta desarrollada por el Dr. Jeff Arnold en el Departamento de Agricultura de los Estados Unidos con la Universidad de Texas. Es un modelo continuo de base física usado para pronosticar el impacto que las prácticas de manejo del suelo tienen en el agua, sedimentos y nutrientes en largos periodos de tiempo (Di Luzio et al., 2002). SWAT está definido por 8 componentes: hidrología, clima, erosión y sedimentación, temperatura del suelo, crecimiento de plantas, nutrientes, pesticidas y manejo del suelo (Miller et al., 2007). El ciclo hidrológico que simula SWAT se basa en la ecuación de contenido final de agua en el suelo.

$$SW_{t} = SW_{0} + \sum_{i=1}^{t} (R_{day} - Q_{surf} - ET_{a} - W_{seep} - Q_{gw})$$

Donde:

SW_t es el contenido de agua en el suelo en el día t.

SW es el agua aprovechable por las plantas o el contenido de agua en el suelo menos el contenido de agua a 15-bar.

t es el tiempo en días.

R es la precipitación diaria.

Q la cantidad de escorrentía diaria.

ET la evapotranspiración diaria.

P la percolación diaria.

QR el flujo de retorno o flujo base.

Dentro de los principales componentes hidrológicos para el modelo SWAT, podemos citar a la evapotranspiración, la escorrentía superficial, el flujo lateral y al flujo de retorno.

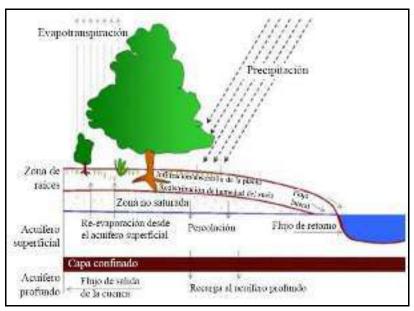


Figura 7-1 Representación del ciclo hidrológico en SWAT

- Evapotranspiración de referencia

La evapotranspiración referencia es la proporción en la cual la evapotranspiración ocurriría en una gran área cubierta uniformemente y completamente con vegetación creciente que tiene acceso a un suministro ilimitado de agua terrestre. Esta proporción se asume para ser no afectada por efectos micro-climáticos de procesos como advección o calor de almacenamiento. El modelo SWAT ofrece tres opciones para estimar la evapotranspiración potencial: Hargreaves, Priestley-Taylor, y Penman-Monteith.

- Escurrimiento superficial

Las escorrentías en la superficie, o flujo terrestre, es el flujo que ocurre a lo largo de una superficie inclinada. Utilizando las cantidades diarias o sub-diarias de lluvia, el SWAT simula volúmenes de superficie de escorrentías y promedios máximos de escorrentías para cada HRU (Unidades de respuesta hidrológica). Este es computado utilizando una modificación del método de curva numérica del SCS (Servicio de Conservación de Suelo del USDA, 1972) o el método de infiltración de Green & Ampt. En el método de curva numérica, la curva varía no-linealmente con el contenido de humedad del suelo. La curva numérica baja si la tierra se acerca el punto de marchitez y aumenta hasta cerca de 100 al acercarse el suelo a la saturación.

- Flujo lateral subsuperficial

El flujo, o inter-flujo subterráneo lateral, es una contribución de la corriente de flujo que se origina debajo de la superficie pero por encima de la zona donde las piedras están saturadas con agua. El flujo subterráneo lateral en el perfil de suelo (0-2m) se calcula simultáneamente con redistribución. Un modelo cinemático del almacenamiento se utiliza para predecir el flujo lateral en cada capa de tierra.

- Flujo de retorno

El flujo del retorno, o flujo de base, es el volumen de agua subterránea originado en el manto freático. El SWAT divide el agua subterránea en dos sistemas de acuíferos: un acuífero superficial y libre, que contribuye al flujo de regreso a las corrientes dentro de la cuenca hidrográfica y un acuífero profundo y limitado que contribuye al flujo de regreso a las corrientes fuera de la cuenca. El agua que filtra más allá del fondo de la zona de raíz se divide en dos fracciones—cada fracción se convierte en recarga para cada uno de los acuíferos. Además de retornar al flujo, el agua almacenada en el acuífero superficial puede abastecer de nuevo humedad en el perfil del suelo en condiciones muy secas o es absorbido directamente por la planta.

7.1.2. Etapas de implementación de un modelo hidrológico SWAT

La implementación del modelo hidrológico SWAT requiere de las siguientes etapas bien definidas y se describen detalladamente en la sección de metodología:

- Recopilación de información
- Construcción del modelo²
- Calibración
- Validación
- Y análisis de las salidas del modelo

7.2 El Marco metodológico adoptado para la modelización hidrológica con SWAT

El enfoque metodológico utilizado para el modelamiento hidrológico de las cuencas del rio Ocoña y Camaná-Majes se muestra en la Figura 7-2. La diferencia para cada cuenca está en los periodos de calibración y validación, lo cual depende de la disponibilidad de información hidrométrica para cada caso.

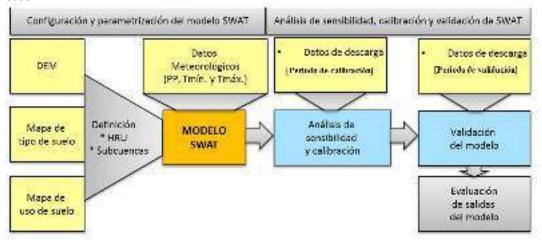


Figura 7-2 Flujograma de la metodología del presente informe para las dos cuencas de aplicación

٠

² Se tiene consideraciones diferentes para la construcción del modelo SWAT en cuencas de régimen natural y cuencas con sistemas de regulación.

7.3 Recopilación de información

Los datos necesarios para el modelo son básicamente de estaciones climatológicas (precipitación, temperatura, velocidad de viento, radiación solar, entre otros) e información del modelo de elevación digital, la cobertura vegetal y tipo de suelo presente en la cuenca.

- Estaciones climatológicas

Las precipitaciones y temperatura del aire fueron tomadas de la base de datos del PISCO (*Peruvian Interpolated data of the SENAMHI's Climatological and hydrological Observations*) a paso diario. La relación y ubicación de las estaciones de apoyo utilizadas, en las cuencas Ocoña y Camaná Majes se presentan en las Tabla 7-1 y 7-2.

Para la cuenca del rio Ocoña se trabajó con 19 estaciones virtuales (Estvir) tomadas en el centroide de cada subcuenca del modelo SWAT en Ocoña. Para cada caso, la precipitación media, para cada estación fue generada a partir de las grillas de lluvia del PISCO correspondiente a cada subcuenca. De igual manera la evapotranspiración fue generada a partir de la serie de temperatura máxima y mínima (Método Penman-Monteith para la cuenca Ocoña).

Para la cuenca del rio Camana se trabajó con 26 estaciones virtuales (Estvir) tomadas en el centroide de cada subcuenca del modelo SWAT en Camaná Majes. Para cada caso, la precipitación media para cada estación fue generada a partir de las grillas de lluvia del PISCO correspondiente a cada subcuenca. De igual manera la evapotranspiración fue generada a partir de la serie de temperatura máxima y mínima (Método de Hargreaves para la cuenca de Camaná Majes).

Tabla 7-1 Estaciones virtuales para las variables de precipitación y temperatura Cuenca del río Ocoña

Estación	Latitud (o)	Longitud (o)	Elevación (msnm)
Estvir1	-14.74	-73.55	4393.95
Estvir2	-14.78	-73.12	4160.63
Estvir3	-14.96	-73.5	4047.67
Estvir4	-14.83	-72.68	4359.93
Estvir5	-14.98	-72.51	4917.85
Estvir6	-14.98	-72.91	4599.9
Estvir7	-15.13	-73.55	3473.91
Estvir8	-15.05	-73.35	3436.19
Estvir9	-15.06	-73.14	4486.98
Estvir10	-15.32	-73.66	3276.38
Estvir11	-15.42	-73.27	1861.66
Estvir12	-15.27	-72.94	3134.33
Estvir13	-15.44	-72.76	4358.63
Estvir14	-15.72	-72.85	3643.82
Estvir15	-15.84	-72.86	3198.97
Estvir16	-15.98	-72.92	1719.94
Estvir17	-15.95	-73.07	1041.41
Estvir18	-15.76	-73.09	774.49
Estvir19	-16.18	-73.12	1607.61

Tabla 7-2. Relación de estaciones virtuales para las variables de precipitación y temperatura. Cuenca del rio Camaná Majes.

Estación	Latitud (o)	Longitud (o)	Elevación (msnm)
Estvir1	-16.38	-72.56	1102.28
Estvir2	-16.30	-72.30	1291.75
Estvir3	-16.22	-72.63	1614.54
Estvir4	-15.77	-71.09	4556.16
Estvir5	-15.79	-70.97	4459.95
Estvir6	-15.67	-72.32	3044.65
Estvir7	-15.67	-71.07	4401.10
Estvir8	-15.89	-72.55	2303.42
Estvir9	-15.67	-72.51	3012.24
Estvir10	-15.74	-72.17	3937.25
Estvir11	-15.52	-71.19	4240.16
Estvir12	-15.58	-71.37	4164.61
Estvir13	-15.46	-71.32	4411.70
Estvir14	-15.60	-71.72	3987.31
Estvir15	-15.44	-71.26	4228.15
Estvir16	-15.47	-71.06	4526.84
Estvir17	-15.33	-71.30	4354.13
Estvir18	-15.37	-71.48	4400.88
Estvir19	-15.32	-71.04	4666.31
Estvir20	-15.30	-71.14	4633.34
Estvir21	-15.27	-71.39	4057.03
Estvir22	-15.18	-71.25	4415.39
Estvir23	-15.16	-71.44	4377.27
Estvir24	-15.28	-72.03	4617.28
Estvir25	-15.28	-72.35	3760.47
Estvir26	-16.09	-72.35	1355.94

- Estaciones hidrométricas

El modelo SWAT en la cuenca Ocoña fue calibrado para el periodo 01/09/2006 hasta 31/12/2011 en el punto de control hidrométrico Puente Ocoña.

La Tabla 7-3 indica la ubicación geográfica de la estación hidrométrica Puente Ocoña analizada, y la Figura 7-3 la distribución temporal de los caudales diarios para el periodo 01/01/2006 – 31/12/2016 en la misma estación.

Tabla 7-3. Estación hidrométrica utilizada para la calibración en de la cuenca del río Ocoña.

Estación	Tipo	Latitud	Longitud	Elevación (msnm)
Puente Ocoña	Limnimétrica	-16°25'48.0"	-73°6'36.0"	23

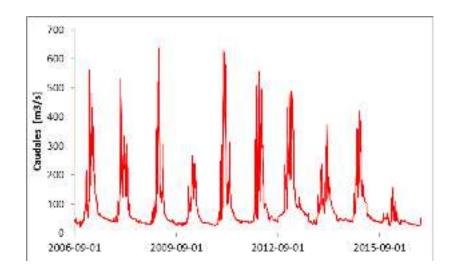


Figura 7-3 Distribución temporal de los caudales diarios para el periodo 01/01/2006 – 31/12/2016 en la estación Puente Ocoña

Fuente: SENAMHI

El modelo SWAT en la cuenca Camaná Majes fue calibrado para el periodo 01/01/2002 hasta 31/12/2010 en el punto de control hidrométrico Huatiapa. La Tabla 7-4 indica la ubicación geográfica de la estación hidrométrica Huatiapa analizada, y la Figura 7-4 la distribución temporal de los caudales diarios para el periodo 01/01/2002 – 31/12/2016 en la misma estación.

Tabla 7-4. Estación hidrométrica utilizada para la calibración en de la cuenca del río Camana

Estación	Tipo	Latitud	Longitud	Elevación (msnm)
Huatiapa	Limnimétrica	- 15°59'41.0"	- 72°28'13.0"	699
		•		

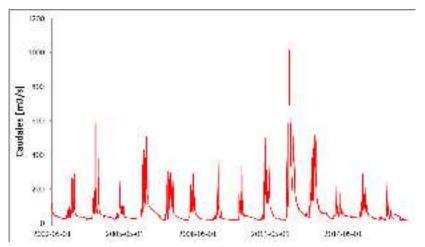


Figura 7-4 Distribución temporal de los caudales diarios para el periodo 01/01/2002 – 31/12/2016 en la estación Huatiapa

Fuente: SENAMHI

Para la cuenca del rio Camaná Majes se tuvo que modelar con un enfoque de cuenca con presencia de un sistema de regulación (proyecto de irrigación Majes Siguas), dada la presencia de tres reservorios (detallado en la sección de construcción del modelo). Debido a ello se tuvo en consideración la información de los caudales de salida de los sistemas de Colca y Chili, y batimetría de los embalses (curvas elevación-área y elevación-volumen). Información proporcionada por la Autoridad Autónoma de Majes (AUTODEMA).

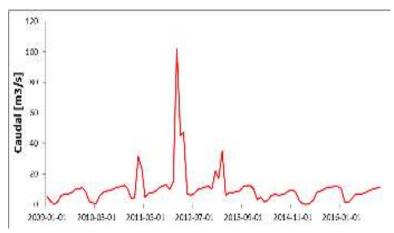


Figura 7-5 Caudales medios mensuales de salida del reservorio de Condoroma periodo 2009-2016.

Fuente: SENAMHI

- Modelo digital de elevación

Para la delimitación de la zona de estudio de utilizó la base cartográfica de cuencas hidrográficas a nivel nacional propuesta por la Autoridad Nacional del Agua (formato .shp), mientras que para la generación del el modelo digital de elevaciones se utilizó el ASTER GDEM de la NASA y el del Ministerio de Economía, Comercio e Industria de Japón, con resolución espacial de 30 m.Cobertura vegetal de los suelos La información de cobertura del suelo fue obtenida a partir del producto GlobalLand30 (Chen et al., 2015), los datos fueron obtenidos del http://www. globallandcover.com/GLC30Download/index.aspx descargados raster GeoTIFF a partir de mosaicos provistos de 5° x 6°. GlobeLand30 cubre el área entre los 80°N y 80°S, y los mosaicos se organizan por dos métodos. Los mosaicos de datos de tamaño de 5° (latitud) x 6°(longitud) ubicados entre los 60°N y 60°S, de tamaño de 5°(latitud) x 12°(longitud) dentro de los 60ºa 80ºde latitud norte y sur. El sistema ofrece la descarga gratuita en línea para las instituciones de investigación y organizaciones de bienestar público.

Se relacionó las clases presentes en la información de cobertura vegetal con la base de datos SWAT que está conformado con los tipos de cultivo y cobertura más comunes, esta información es importante ya que incluye notoriamente en la evapotranspiración, intercepción y erosión superficial.

Tabla 7-5. Adecuación de la base de datos GlobalLand30 a la base de datos SWAT

Estación	Descripción de las clases encontradas	Código SWAT	Descripción SWAT
	Cultivos	AGRL	Agricultural land generic
Uso de suelo	Vegetación arbustiva	FRST	Forest – mixed
	Pajonal barbecho	PAST	Pasture
	Cuerpos de agua	WATR	water
	Casco Urbano	URHD	Residual High Density
	Lecho Rocoso	BARR	Barren
	Permanent snow and ice	WATR	water
	Leptosol	18834	Leptosol
Tipo de suelo	Regosol	18835	Regosol
	Cambisol	18835	Cambisol
	Andosol	188839	Luvisols

- Tipos de suelos

Los datos de tipo de suelo es quizás la información más complicada de obtener debido a su alto costo y trabajo en campo necesario. Por tal motivo se optó por el uso de la información provista por el SoilGrids1km, esta es una colección de mapas sobre propiedades y clase de suelos actualizable del mundo con una resolución relativamente gruesa de 1 km este producto está basado en el perfil global de la tierra y datos de covarianza (Hengl and G, 2014). Los datos WorlSoil1km pueden obtenerse del siguiente link http://soilgrids.org/ estos datos se obtienen en formato raster GeoTIFF a partir de mosaicos provistos de 10° x 10°.

Tabla 7-6. Tipo de datos, resolución y fuente

Tipo de datos	Resolución	Fuente	Enlace
Datos hidrometeorológicos	Diaria [1981-2016]	SENAMHI y AUTODEMA	http://www.senamhi.gob.pe/ http://www.autodema.gob.pe/index.php/gesti on-de-recursos-hidricos
DEM	30 m	CGIAR-CSI	http://srtm.csi.cgiar.org/ http://www.
Cobertura vegetal	30 m	GlobalLand30	globallandcover.com/GLC30Download/index.as px
Mapa de suelo	1 Km	SoilGrids1km	http://soilgrids.org/

7.4 Construcción del modelo SWAT

7.4.1 Consideraciones para la delimitación de las subcuencas y HRU

El uso de subcuencas en una simulación es particularmente beneficioso cuando existen áreas con usos o tipos de suelos dominantes o diferentes a modo de incrementar la precisión en la predicción del caudal. SWAT permite dividir aún más las sub-cuencas en múltiples unidades de respuesta hidrológica (*Hydrologic Response Unit* o HRU, por sus siglas en inglés) basado en la combinación de suelo, cubierta vegetal y pendientes. La Figura 7-6 muestra una mejor representación del esquema de construcción del modelo SWAT.

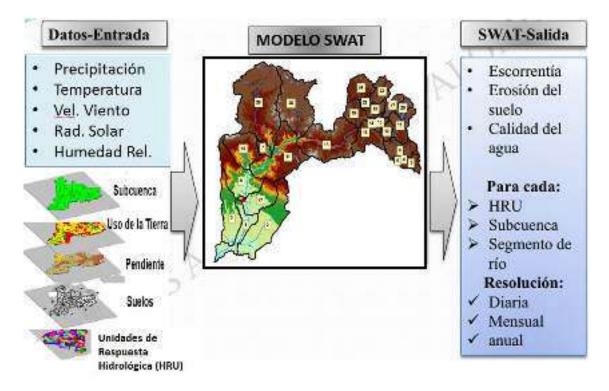


Figura 7-6 Esquema de construcción del modelo SWAT. Variables de entrada y de salida.

La cuenca del rio Ocoña no cuenta con infraestructura hidráulica mayor (reservorios y centrales hidroeléctricas), pero si recibe el aporte hídrico de varios lagos y lagunas. Dada el no conocimiento del aporte de estos cuerpos de agua, no fueron consideradas en la construcción del modelo, y por lo tanto, la cuenca de rio Ocoña fue tomada como cuenca de régimen natural. La delimitación de las subcuencas del modelo SWAT en Ocoña tuvo como punto de salida la ubicación de la estación hidrométrica Puente Ocoña, la cual fue tomada como punto de calibración para el modelo. Cabe mencionar que para la definición de la HRU, se hizo previamente la clasificación de las coberturas y tipos de suelos presentes según lo requiere el modelo SWAT. Para el caso de las pendientes se hizo una subclasificación en 5 clases: de 0 a 10%, de 10 a 20%, de 20 a 30%, de 30 a 45% y mayores a 45%. Finalmente se obtuvieron 20 subcuencas (Figura 7-7) y 396 HRU.

Figura 7-7 Topología del Modelo SWAT para la cuenca del rio Ocoña. Estación de calibración Puente Ocoña.

Para cada subcuenca, el modelo SWAT permite la discretizacion en HRU en base a la combinación única de las coberturas de pendiente (5 niveles), uso de suelo (6 tipos de uso de suelo) y tipo de suelo (7 tipo de suelos).

La Figura 7-8 muestra las coberturas analizadas para el modelamiento hidrológico con SWAT.

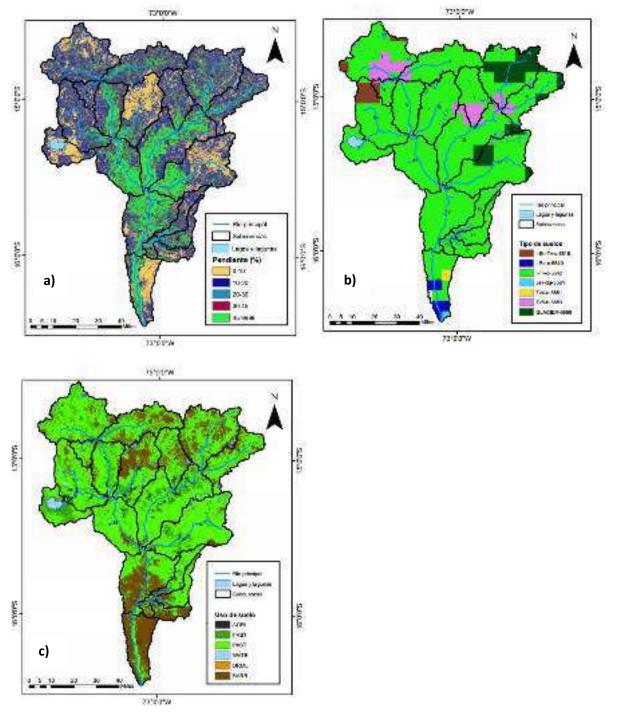


Figura 7-8 Coberturas requeridas para la creación del modelo SWAT para la Cuenca del río Ocoña a) Pendientes, subdivisión de la cuenca en 5 clases, b) Tipo de suelo, a partir de los datos WorlSoil1km y reclasificado y c) Uso de suelo, a partir del producto GlobalLand30 y reclasificado para SWAT 2012.

Fuente: Elaboración propia

Tabla 7-7. Características de la cuenca Ocoña reclasificado de acuerdo a la superposición y combinación única de un tipo particular del uso de suelo, tipo de suelos y pendientes con cobertura no menor al 5 % en cada subcuenca

Parámetro/Código	Descripción	Área [km²]	% del área de la cuenca
Cuenca	cuenca del río Ocoña	1600075.92	100
Uso de suelo			
PAST	Pajonales	1025258.3	64.08
FRST	Bosques y matorrales	163126.8	10.19
AGRL	Agricultura	25941.0	1.62
WATR	Cuerpos de agua	4703.5	0.29
URML	Urbano	167.2	0.01
BARR	Árido	380879.0	23.80
Tipo de suelo			
GLACIER	Glaciares	112184.8	7.01
I-Bh-Tv-c		36217.3	2.26
I-Re-c		19169.4	1.20
I-Tv-c		1335088.9	83.44
Je7-3a		2869.5	0.18
Tv4-a		5181.5	0.32
Tv6-b		89364.1	5.58
Pendiente (%)			
0-10		371565.8	23.22
10-20		360116.8	22.51
20-30		246955.4	15.43
30-45		235079.2	14.69
>45		386358.5	24.15

La cuenca del rio Camaná Majes, a diferencia de Ocoña, tiene tres reservorios de regulación localizadas en la parte alta de la cuenca. La más importante es la represa Condoroma, la cual sirve como sistema de abastecimiento para las pampas de Majes, ubicadas en el valle (parte baja) de la cuenca, tal como fue concebido en el proyecto de irrigación Majes Siguas. Los otros dos reservorios (El Pañe y Dique Los Españoles) trasvasas sus recursos a la cuenca del rio Quilca-Chili. Particulares consideraciones se tuvo en cuenta para la elaboración del modelo de esta cuenca, la más importante es la de considerar el aporte regulado de los caudales salientes de los reservorios. Condoroma aporta al sistema hídrico mientras que las dos represas restantes no, esto fue especificado en la base de los datos de entrada del modelo SWAT de tal manera que existan cero flujos de salida de estas represas y no aporten al flujo del sistema de la cuenca Camaná Majes.

La ubicación de cada embalse es tomado como un subcuenca independiente, en donde el proceso hidrológico para la generación de las descargas de salida es tratado de una forma distinta. SWAT realiza este proceso de balance hídrico de la siguiente manera:

$$V = V_{stored} + V_{flowin} - V_{flowout} + V_{pcp} - V_{evap} - V_{seep}$$

Donde:

V es el volumen de agua en el reservorio al final del día (m³)

V_{stored} es el volumen almacenado,

V_{flowin} es el volumen entrante,

V_{flowout} es el volumen de salida,

V_{pcp} es el volumen de la precipitación caída,

 V_{evap} es el volumen de agua que sale del sistema por evaporación, y V_{seep} el volumen que se pierde por infiltración.

La metodología para el cálculo de cada variable esta detallada en el manual teórico del SWAT (http://swat.tamu.edu/media/99192/swat2009-theory.pdf). La variable de mayor importancia es el cálculo del volumen de salida el cual se representa el caudal en m3/s efluente de la represa. Para ello, SWAT permite elegir entre 4 métodos de acuerdo a la información disponible. Para el caso de la cuenca Camaná Majes el método usado fue el de "Tasa media de liberación anual".

La delimitación de las subcuencas del modelo SWAT en Camaná Majes tuvo como punto de salida la ubicación de la estación hidrométrica Huatiapa, la cual fue tomada como punto de calibración para el modelo. Cabe mencionar que para la definición de la HRU, se hizo previamente la clasificación de las coberturas y tipos de suelos presentes según lo requiere el modelo SWAT. Para el caso de las pendientes se hizo una subclasificación en 5 clases: de 0 a 10%, de 10 a 20%, de 20 a 30%, de 30 a 45% y mayores a 45%. Finalmente se obtuvieron 27 subcuencas (Figura 7-9) y 442 HRU.

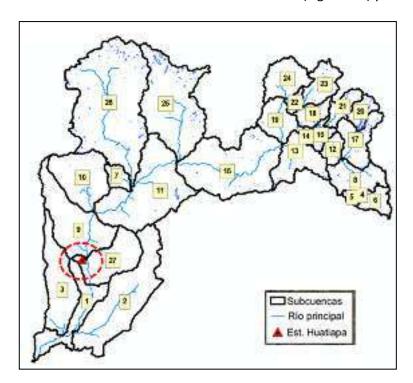


Figura 7-9 Topología del Modelo SWAT para la cuenca del rio Camaná Majes. Estación de calibración Huatiapa

Para cada subcuenca, el modelo SWAT permite la discretizacion en HRU en base a la combinación única de las coberturas de pendiente (5 niveles), uso de suelo (6 tipos de uso de suelo) y tipo de suelo (8 tipo de suelos). La Figura 7-10 muestra las coberturas analizadas para el modelamiento hidrológico con SWAT.

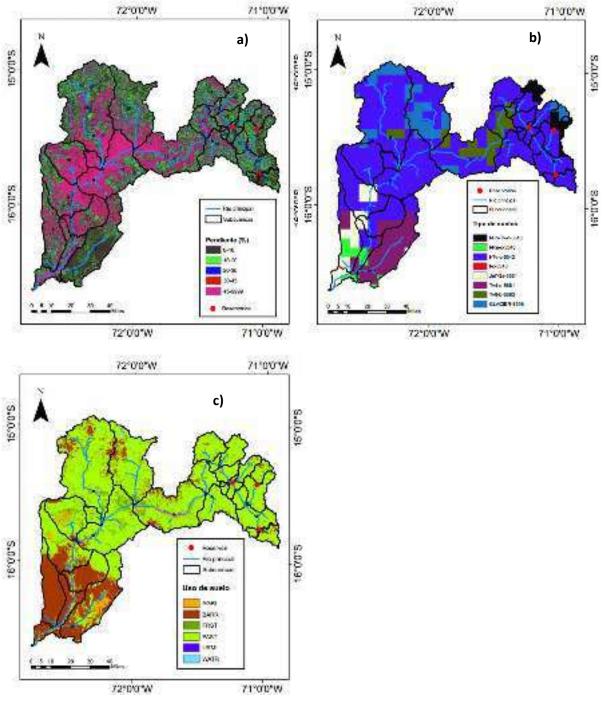


Figura 7-10. Cobertura requerida para la creación del modelo SWAT para la cuenca del río Camaná Majes. a) Pendientes, subdivisión de la pendiente de la cuenca en 5 clases, b) Tipo de suelo a partir de los datos WorlSoil1km y reclasificado según la base de datos SWAT 2012 y Uso de suelo a partir del producto GlobalLand30 y reclasificado según la base de datos SWAT 2012.

Tabla 7-8. Características de la cuenca Camaná Majes reclasificado de acuerdo a la superposición y combinación única de un tipo particular del uso de suelo, tipo de suelos y pendientes con cobertura no menor al 5 % en cada sub-cuenca

Parámetro/Código	Descripción	Área [km²]	% del área de la cuenca
Cuenca	cuenca del río Camaná Majes	1715275.7	100
Uso de suelo			
PAST	Pajonales	1176246.9	68.57
FRST	Bosques y matorrales	231654.5	5.47
AGRL	Agricultura	45387.5	2.65
WATR	Cuerpos de agua	9180.3	0.54
URML	Urbano	1418.7	0.08
BARR	Árido	389294.7	22.70
Tipo de suelo			
GLACIER	Glaciares	144626.1	8.43
I-Bh-Tv-c		110083.4	2.60
I-c		203.1	0.01
I-Re-c		37027.8	2.16
I-Tv-c		1131441.8	65.96
Je7-3a		207947.5	4.91
Tv4-a		169045.3	9.86
Tv6-b		104228.5	6.08
Pendiente (%)			
0-10		470025.5	27.40
10-20		1034619.9	24.41
20-30		676674.0	15.96
30-45		600711.4	14.17
>45		309613.3	18.05

7.4.2 Calibración del modelo SWAT

La parametrización correcta es un paso importante en la calibración del modelo y debe basarse en el conocimiento de los procesos hidrológicos y la variabilidad en el suelo, el uso de la tierra, la pendiente y la ubicación, tal como se define en el número de la subcuenca. La parametrización, por lo tanto, podría definirse como "el proceso de impartir el conocimiento del analista de los procesos físicos de la cuenca al modelo". Dentro de un primer paso, la identificación de los parámetros más sensibles del modelo mediante una calibración manual es lo más recomendado. Posteriormente, con la identificación de los rangos de parámetros, la calibración es dirigida eficazmente hacia una rutina de optimización. Cabe mencionar que la parametrización correcta puede resultar en una calibración más rápida y precisa del modelo con una incertidumbre de predicción más pequeña. SWAT-CUP incluye procedimientos automatizados y semiautomáticos para la calibración de modelos (Rojas, R., & Zambrano-bigiarini, M., 2012).

Los siguientes pasos se sugieren para la calibración con el programa semi-automatizado SUFI2:

- Preparar los archivos de entrada al SWAT-CUP, generados por la simulación echa en ArcSWAT.
- Dividir los períodos de calentamiento, calibración y validación del modelo SWAT.
- Determinar los parámetros más sensibles del modelo.
- Asignar al SWAT-CUP SUFI-2 entre 300 a 500 iteraciones, y observar los resultados para cada estación a calibrar.
- Ver la sensibilidad de los parámetros considerados en base al p-value y t-stat. Valores altos de t-Stat y p-values cercano a cero representan mayor sensibilidad (Karim C. Abbaspour, 2009).

 En base a los nuevos rangos y sensibilidad de parámetros, se procede a la siguiente iteración para continuar con la calibración del modelo hasta obtener un resultado satisfactorio en base a l estadístico a optimizar.

Métricas de desempeño

Las métricas de desempeño del modelo SWAT principalmente se han utilzado dos indicadores: el criterio de Nash (NSE) y el porcentaje del sesgo estadístico (PBIAS). Los criterios de evaluación de desempeño fueron establecidos según Moriasi et al., (2007), donde se realiza una extensa revisión de literatura de los reportes de valoración de desempeño utilizados en el modelamiento hidrológico.

$$NSE = 1 - \frac{\sum_{i=1}^{n} (O_{i} - S_{i})^{2}}{\sum_{i=1}^{n} (O_{i} - O_{p})^{2}} \ PBIAS = \frac{\sum_{i=1}^{n} (O_{i} - S_{i}) \times 100}{\sum_{i=1}^{n} O_{i}}$$

Donde:

Oi: es la variable observada

S_{i:} es la variable simulada

Op: es el promedio de la variable observada

n: es el número de observaciones bajo consideración

Tabla 7-9. Esquema de clasificación del desempeño del modelo SWAT

Indicador	Insatisfactorio	Satisfactorio	Bueno	Muy bueno
NSE	< 0.50	0.50 - 0.65	0.65 – 0.75	> 0.75
± PBIAS (%)	> 25	15 – 25	10 – 15	< 10

Fuente: Moriasi et al. (2007)

7.5 Resultados del modelamiento en la cuenca del rio Ocoña

7.5.1 Simulacion inicial del modelo SWAT

Todo el análisis que a continuación se presenta se hace en función de la precipitación diaria y la consecuente simulación de descargas medias diarias. Nótese que por la escala de tiempo que se ha trabajado, un análisis a nivel mensual o anual es posible de llevar a cabo. En base a la configuración y parametrización del modelo SWAT para la cuenca Ocoña, una simulación inicial del modelo se realizó en el período de calibración 2006-2011 con un año (2005-2006) de periodo de calentamiento. En general existe una ligera sobrestimación (PBIAS= 5.3%) y desempeño insatisfactorio (NSE=0.3). Estos resultados se deben principalmente a la poca capacidad del modelo en representar las bajas descargas (nótese en la simulación a escala mensual).

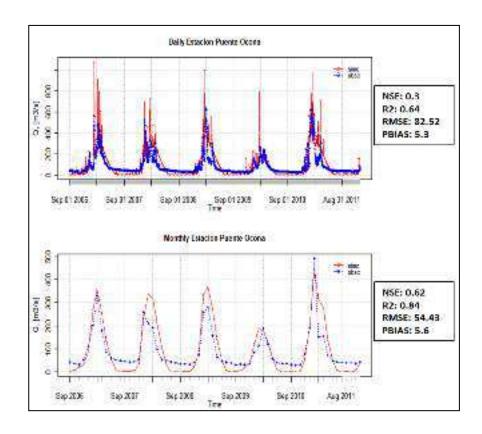


Figura 7-11 Simulación inicial del modelo SWAT en la estación Puente Ocoña

7.5.2 Calibración manual del modelo SWAT

El criterio que se ha tomado para establecer los rangos adecuados de los parámetros más sensibles para la calibración, depende según la estación a evaluar. Tal como se aprecia en la simulación inicial, se presenta subestimaciones en los periodos de estiaje y pequeños desfases de los caudales picos simulados, debido a ello los parámetros más influyentes son modificados correspondiendo a la necesidad de disponer más caudal en estiaje y la de ajustar mejor el desfase que el modelo genera. Como estrategia de calibración, se ha de mencionar que dentro de la estructura del SWAT el flujo es dividido en flujo superficial (Qsup), flujo lateral (Qlat), flujo de retorno del acuífero superficial (Qgws) y flujo de retorno del acuífero profundo (Qgwd). Distintos parámetros gobiernan el aporte de cada uno de estos flujos, los cuales fueron tomados en cuenta para dar inicio a la calibración manual e identificación de los parámetros más sensibles.

7.5.3 Análisis de sensibilidad de los principales parámetros del modelo SWAT

Se realizó un análisis de sensibilidad de los parámetros que gobiernan el aporte hídrico para el modelo SWAT. En esta sección se analiza el rango de los valores más adecuado de cada parámetro influyente encontrado. Estos tienen implicancia directa en la producción de los flujos superficial (Q_{sup}) , lateral (Q_{lat}) y subterráneo (Q_{gw}) de la cuenca.

Parámetros de mayor influencia para el Q_{sup}

En cuanto a los parámetros que influyen en la cuantificación del flujo superficial, el número de curva (CN2) es el que mayor impacto genera. Es un parámetro muy sensible, cuyo aumento (disminución) produce un mayor (menor) aporte superficial y disminución (incremento) del índice de Nash. Cabe mencionar que si bien la reducción del CN2 mejora el desempeño del modelo, se debe tener en cuenta que se pierde el significado físico del proceso hidrológico de la cuenca al aumentar el aporte

del Q_{lat} y Q_{gw} lo que conllevaría a que el modelo genere el aporte hídrico únicamente del flujo base y muy poco aporte del Q_{sup} .

- Parámetros de mayor influencia para el Q_{sup}, Q_{lat} y Q_{gw}

Se evaluaron los parámetros del suelo más influyentes. Se consideraron para el análisis la densidad aparente (SOL_BD) la conductividad hidráulica del suelo (SOL_K) y la capacidad de agua disponible (SOL_AWC). De estos tres parámetros el más importante fue SOL_AWC, parámetro permite cuantificar la cantidad de agua disponible en el suelo para el proceso de evapotranspiración; el cual indicó que el valor correcto a ser tomado debería estar en el rango de 0.09-0.1. Tiene una gran influencia para el aumento (reducción) del flujo lateral a medida que va incrementando (disminuyendo) su valor y mejorando (reduciendo) el desempeño del modelo en base al índice de Nash. El aumento (disminución) del SOL_AWC también genera una reducción (incremento) del aporte de $Q_{\rm gw.}$

Parámetros de mayor influencia para el Q_{gw}

Estos parámetros me permiten cuantificar mejor al aporte hídrico del acuífero superficial y profundo. Se identificaron cinco parámetros: RCHRG_DP, GW_REVAP, GWQMN, SHALLST y ALPHA_BF; entre ellos el más importante fue RCHRG_DP, que es la fracción que recarga el acuífero profundo desde la zona de raíces. El aumento (disminución) de su valor incrementa (reduce) el aporte hídrico del acuífero y tiende a producir un exceso (déficit) del mismo perdiendo el sentido físico del modelo. El rango establecido para su calibración fue de 0.55 a 0.6.

Parámetros como GWQMN y SHALLST, gobiernan el estado inicial del acuífero superficial y a partir de que umbral permite que ocurra el flujo de retorno. Para un mejor ajuste del índice de Nash sus valores deben estar en el rango de 1200-1300 y 700-800 respectivamente. Finalmente el GW_REVAP fue establecido entre 0.04-0.05 permitiendo así una mejor cuantificación de la intensidad de los caudales, debido a que un aumento (reducción) de su valor generaba una mayor (menor) subestimación.

7.5.4 Calibración semiautomática mediante el algoritmo *Sequential Uncertainty Fitting* (SUFI2)

La calibración semiautomática se llevó a cabo en el programa SWAT-CUP. A partir de los rangos obtenidos del análisis de sensibilidad (Tabla 7-10), los nueves parámetros considerados fueron calibrados de acuerdo a la función objetivo del criterio de Nash y a partir de dos simulaciones de 500 iteraciones cada uno.

Tabla 7-10. Valores mínimos y máximos de los parámetros más sensibles. La letra "v" antes de cada parámetro indica que el valor será sustituido entre algún valor del rango establecido.

Parámetros	Descripción	Valor Mínimo	Valor Máximo
v_SOL_AWC	Contenido de agua en el suelo para aprovechamiento de las plantas	0.09	0.1
v_RCHRG_DP	Recarga hídrica desde la zona de raíces hasta el acuífero profundo	0.55	0.6
v_GW_REVAP	Coeficiente de traslado del agua desde el acuífero superficial hacia la zona de raíces por efectos de capilaridad.	0.04	0.05
v_SHALLST	Umbral inicial [mm] del acuífero superficial	700	800
v_GWQMIN	Umbral mínimo [mm] del acuífero superficial para que ocurra el flujo de retorno	1200	1300
v_ALPHA_BF	Factor alfa del flujo base (1/día)	0.019	0.021

7.5.5 Simulación a paso de tiempo diario

Según lo propuesto por Moriasi et al. (2007), los resultados del proceso de calibración semiautomática permitió cuantificar los caudales medios diarios (NSE/PBIAS: 0.74/1) para el periodo de 01/01/2002 – 31/12/2010. Las métricas decrecen para el periodo de validación establecido entre 01/01/2011 hasta 31/12/2016, con valores satisfactorios (NSE/PBIAS: 0.5/8.3). Existen ligera (mayor) subestimación en el periodo de calibración (validación) en relación al PBIAS, pero está dentro del rango catalogado como buen desempeño.

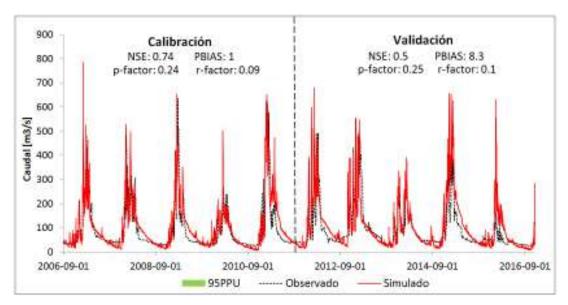


Figura 7-12. Comparativa de los caudales medios diarios simulados respecto al observado. Se indica las métricas de desempeño y la banda de incertidumbre al intervalo de predicción del 95% [995PPU].

Se observa que las medidas de incertidumbre mejoran. Así de acuerdo a p-factor la banda de 95PPU contiene 24% (25%) de las observaciones con una estrecha banda de incertidumbre dado por r-factor de 0.09 (0.1) en el periodo de calibración (validación). Estos valores obtenidos son aceptables y hacen referencia a un buen desempeño del modelo.

7.5.6 Simulación a paso de tiempo mensual

A nivel mensual la tendencia se mantiene (con resultados muy buenos), es decir, que para el periodo de calibración (NSE/PBIAS: 0.9/1.1) se obtienen mejor desempeño que el periodo de validación (NSE/PBIAS: 0.63/10.9). Las medidas de incertidumbre mejoran. Así de acuerdo a p-factor la banda de 95PPU contiene 19% (20%) de las observaciones con una estrecha banda de incertidumbre dado por r-factor de 0.01 (0.07) en el periodo de calibración (validación).

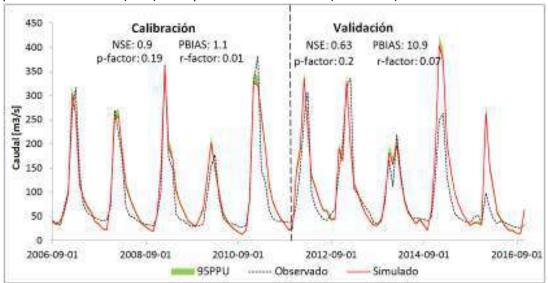


Figura 7-13 Comparativa de los caudales medios diarios simulados respecto al observado.

La Tabla 7-11 indica las métricas de desempeño y la banda de incertidumbre al intervalo de predicción del 95% [995PPU].

Tabla 7-11. Resumen de estadísticos del periodo de calibración y validación a

	Calibración [01/01/2006 - 31/12/2011]				[01/01	Validació ./2012 - 31/		
Estación	NSE	PBIAS	p-factor	r-factor	NSE	PBIAS	p-factor	r-factor
Puente Ocoña [paso diario]	0.74	1	0.24	0.09	0.5	8.3	0.25	0.1
Puente Ocoña [paso mensual]	0.9	1.1	0.19	0.01	0.63	10.9	0.2	0.07

7.5.7 Balance hídrico de la cuenca del río Ocoña

El modelo SWAT caracteriza los diferentes procesos; siendo la precipitación, la escorrentía superficial, el flujo base (el flujo lateral más el flujo de retorno desde los acuíferos) y la evapotranspiración los elementos más importantes del balance hídrico. Así, para una mejor comprensión de los diferentes procesos que ocurren dentro de la cuenca del río Ocoña (tomando como referencia aguas arriba de la estación Puente Ocoña); se presenta la cuantificación en mm de los diferentes componentes del balance hídrico en base al modelo SWAT calibrado.

La Tabla 7-12 musetra para la cuenca del río Ocoña el rendimiento hídrico es mayormente producido por la contribución del flujo base. En función al IFB la cuenca aporta flujo base (flujo de escorrentía superficial) en un 82.5% (17.5%) en promedio (de los periodos de calibración y validación) del total del rendimiento hídrico.

Tabla 7-12. Balance de masa anual del rendimiento hídrico de la cuenca. Q_{surf} , Q_{lat} , Q_{gws} y Q_{gwd} son los aportes de flujo superficial, lateral, del acuífero superficial y del acuífero profundo

Balance de masa anual	Sin calibración 2006-2011	Calibración 2006-2011	Validación 2012-2016
Rendimiento de la cuenca			
Rendimiento hídrico (WYLD=Qsurf+Qlat+Qgws+Qgwd) [mm]	208.63	196.36	216.58
Contribución de escorrentía superficial (Qsurf) [mm]	32.18	33.01	39.25
Contribución de flujo base (FB=Qlat+Qgws+Qgwd) [mm]	176.45	163.35	177.33
Flujo Lateral (Qlat) [mm]	51.97	63.43	67.7
Flujo de retorno desde el acuífero superficial (Qgws) [mm]	117.56	7.40	8.16
Flujo de retorno desde el acuífero profundo (Qgwd) [mm]	6.92	92.52	101.47
Índice de flujo base (IFB)	0.85	0.83	0.82

7.5.8 Balance hídrico de la cuenca del río Ocoña

Como una primera visualización del comportamiento hídrico de la cuenca del río Ocoña se adjunta la Figura 7-14 esta estimación se hizo en base al periodo de análisis 1981-2010.

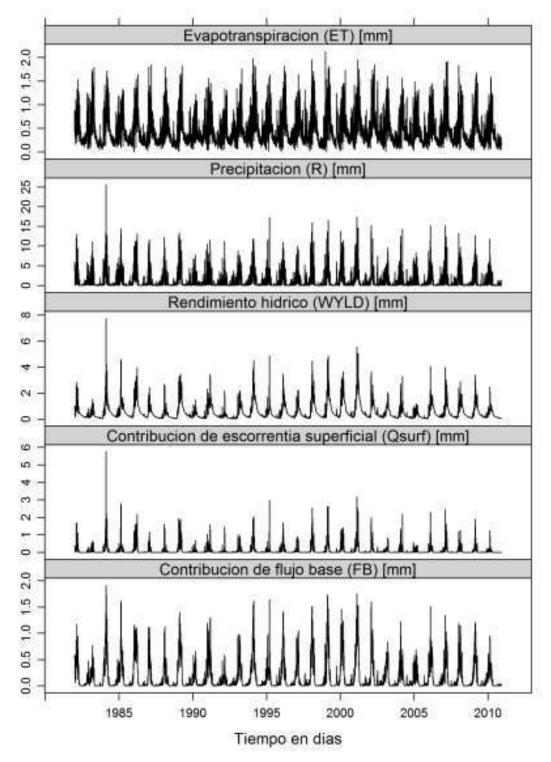


Figura 7-14. Evolución temporal promedio diario de precipitación, evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de flujo base a nivel de la cuenca integral Ocoña

La distribución promedio diaria de las variables de precipitación, evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de flujo base para cada subcuenca se presenta en el Anexo del capitulo.

Tabla 7-13. Promedio anual del balance hídrico (periodo 1981 – 2010) de la cuenca del río Ocoña

Componentes del balance hídrico anual	Periodo
	1981-2010
Aportes y pérdidas del sistema	
Precipitación (R) [mm]	440.9
Evapotranspiración actual (ET) [mm]	179.9
Evapotranspiración potencial (ETP) [mm]	1051.6
Rendimiento en la salida de la cuenca	
Rendimiento hídrico (WYLD=Qsup+Qlat+Qgws+Qgwd) [mm]	224.77
Contribución de escorrentía superficial (Q _{sup}) [mm]	38.26
Contribución de flujo base (FB=Q _{lat} +Q _{gws} +Q _{gwd}) [mm]	186.5
Flujo Lateral (Q _{lat}) [mm]	64.44
Flujo de retorno desde el acuífero profundo (Qgwd) [mm]	93.86
Flujo de retorno desde el acuífero profundo (Qgwd) [mm]	6.92

Para caracterizar el potencial del rendimiento hídrico de la cuenca en la Figura 7-15 se muestra la caracterización espacial del rendimiento hídrico promedio anual (periodo 1981-2010) y sus componentes en porcentaje de contribución de la escorrentía superficial y el flujo base. Donde se puede apreciar que las sub-cuencas ubicadas a la salida de la cuenca tienen rendimientos más bajos (0 - 50 mm/año) debido que esta parte de la cuenca experimenta bajas tasas de precipitación propias de las costas de las cuencas de la vertiente del Pacífico. Mientras tanto la parte alta de la cuenca se presentan rendimientos más altos (150 - 500 mm/año). La mayor contribución al rendimiento hídrico está dado por el flujo base.

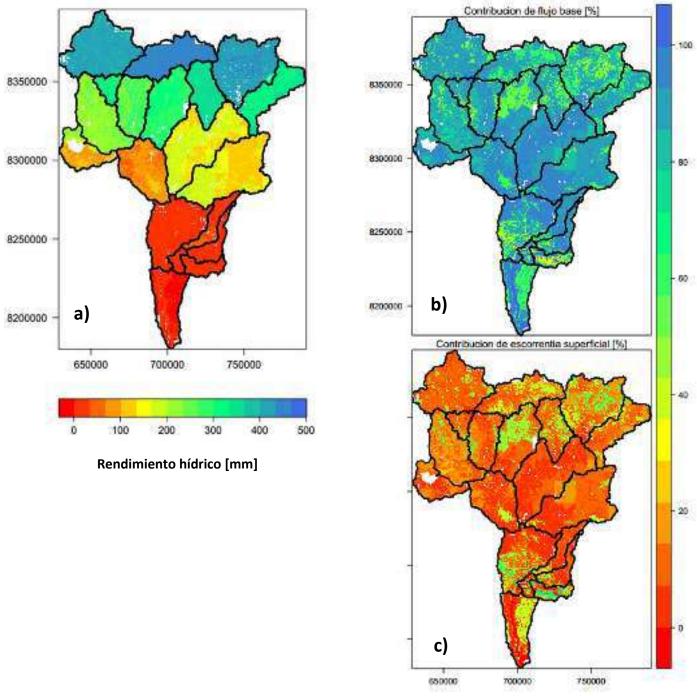


Figura 7-15 Distribución espacial a nivel de HRUs de: a) rendimiento hídrico (WYLD en mm) (Izquierda), b) contribución de flujo base (derecha superior) y c) contribución de la escorrentía superficial (derecha inferior).

Por otro parte, el comportamiento multianual por cada mes indica que hay una fuerte estacionalidad de los caudales. El periodo de mayor contribución hídrica se da entre los meses de Febrero y Marzo. El periodo de más baja contribución se da en los meses de Octubre y Noviembre. Este comportamiento no es homogéneo para todas las subcuencas (Figura 7-16) en donde la distribución de los caudales varía notoriamente. Algunas subcuencas tienen mayor aporte por una mayor cantidad de tiempo, mientras que en otras tienen marcadas diferencias en los aportes durante los periodos de avenida (Enero-Abril) y estiaje (Mayo-Diciembre).

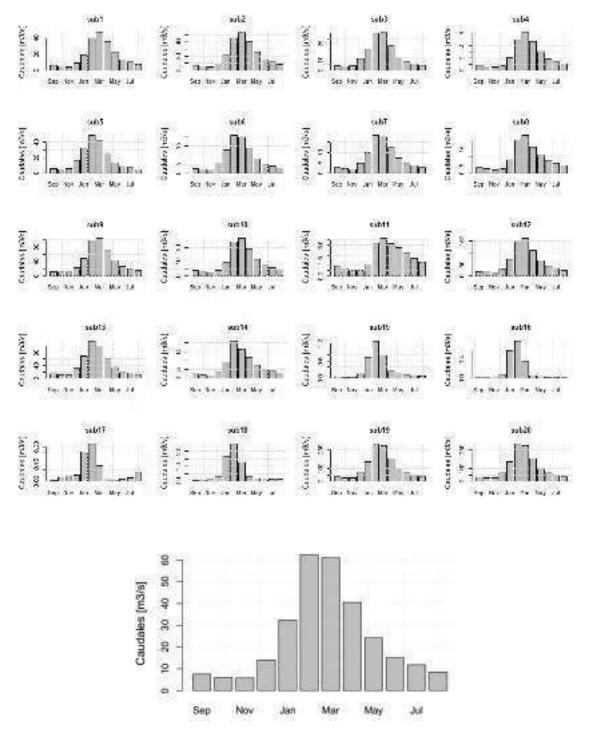


Figura 7-16 Representación de los caudales medios mensuales. En la parte superior, los caudales medios para cada subcuenca. En la parte inferior, los caudales medios para toda la cuenca del río Ocoña. Período de evaluación 1981-2010.

La Tabla 7-14 muestra los caudales medios mensuales (período 1981-2010) para cada subcuenca se encuentran en el Anexo.

Tabla 7-14. Resumen de Precipitación (R), Evapotranspiración real (ET), Rendimiento hídrico (WYLD), Contribución del flujo base (FB), Flujo superficial (Q_{sup}), Flujo lateral (Q_{lat}), Flujo del acuífero superficial (Q_{gws}) y Flujo del acuífero profundo (Q_{gwd}) para cada subcuenca del modelo SWAT en la cuenca del río Ocoña correspondientes a los promedios multianuales del periodo 1981-2010.

Rendimiento hídrico	R [mm]	ET [mm]	WYLD [mm]	Q _{sup} [mm]	FB [mm]	Q _{lat} [mm]	Q _{gws} [mm]	Q _{gwd} [mm]
Subcuenca 1	666.84	202.39	410.78	54.74	356.03	72.44	84.34	199.26
Subcuenca 2	592.82	213.58	323.24	26.67	296.57	177.56	16.81	102.21
Subcuenca 3	715.76	211.27	450.15	86.75	363.40	117.71	71.92	173.77
Subcuenca 4	592.82	201.90	330.80	52.70	278.10	58.75	55.41	163.95
Subcuenca 5	657.95	200.01	423.59	102.15	321.45	115.95	57.96	147.54
Subcuenca 6	601.37	195.02	338.86	60.21	278.65	82.53	51.00	145.12
Subcuenca 7	614.61	210.92	350.65	71.29	279.36	80.34	51.35	147.68
Subcuenca 8	537.45	220.00	222.12	36.71	185.41	54.41	19.54	111.46
Subcuenca 9	532.14	224.16	256.11	40.78	215.33	111.49	12.98	90.86
Subcuenca 10	577.31	223.95	300.87	66.10	234.77	46.45	47.06	141.26
Subcuenca 11	215.29	117.45	102.61	10.58	92.04	14.37	0.00	77.67
Subcuenca 12	243.23	148.41	83.36	9.75	73.61	57.53	0.00	16.07
Subcuenca 13	405.59	208.67	160.63	11.42	149.21	91.41	2.71	55.09
Subcuenca 14	406.91	214.14	149.23	16.62	132.61	53.81	6.50	72.29
Subcuenca 15	162.16	126.27	29.74	3.79	25.95	16.78	0.00	9.17
Subcuenca 16	95.33	77.93	16.14	2.33	13.81	11.81	0.00	1.99
Subcuenca 17	97.82	86.68	11.20	2.38	8.83	8.15	0.00	0.68
Subcuenca 18	78.95	69.24	10.32	0.83	9.49	9.31	0.00	0.18
Subcuenca 19	98.58	78.62	19.61	2.43	17.18	16.04	0.00	1.14
Subcuenca 20	94.28	90.48	4.77	0.09	4.68	4.68	0.00	0.00

La Figura 7-17 se ilustra globalmente la magnitud de la oferta hídrica anual que el modelo SWAT estima en cada una de las unidades hidrográficas identificadas en la cuenca del río Ocoña, donde se puede apreciar que la mayor producción de agua se presenta en el sistema hídrico del río Marán (punto de cierre de cuenca con codificación 12) con un caudal promedio anual de 61.0 m³/s. En el sistema hídrico del río Cotahuasi la oferta hídrica alcanza un caudal promedio anual de 41.0 m³/s (punto de cierre de subcuenca con codificación 13). La menor oferta hídrica anual se presenta en la subcuenca del río Churunga (punto de cierre en subcuenca con codificación 18) con un caudal promedio anual de 0.6 m³/s.

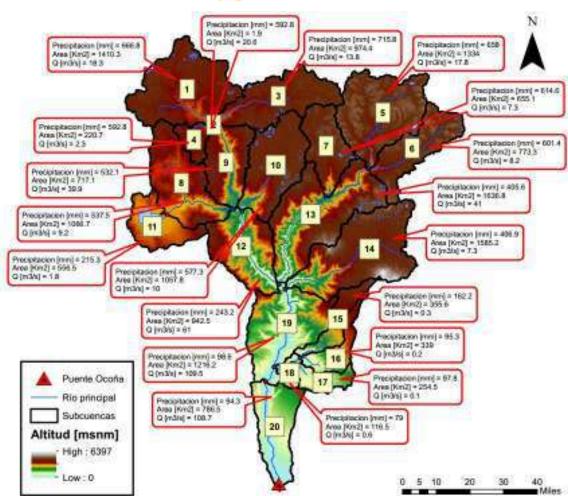


Figura 7-17 Oferta hídrica anual en m³/s en cada unidad hidrográfica de la cuenca Ocoña periodo 1981-2010

7.6 Resultados del modelamiento en la cuenca del rio Camana Majes

7.6.1 Simulación inicial del modelo

Todo el análisis que a continuación se presenta se hace en función de la precipitación diaria y la consecuente simulación de descargas medias diarias. Nótese que por la escala de tiempo que se ha trabajado, un análisis a nivel mensual o anual es posible de llevar a cabo. En base a la configuración y parametrización del modelo SWAT para la cuenca Camaná Majes, una simulación inicial del modelo se realizó en el período de calibración 2002-2010 con un año (2000-2001) de periodo de calentamiento. En general existe subestimación (PBIAS= -24.3%) y desempeño insatisfactorio (NSE=0.34). Estos resultados se deben principalmente a la poca capacidad del modelo en representar las bajas descargas (nótese en la simulación a escala mensual).

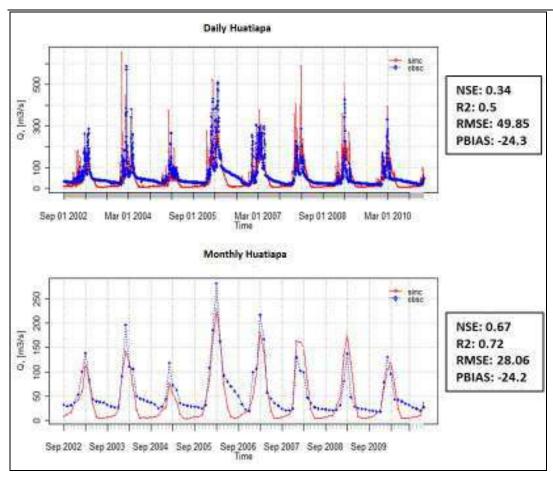


Figura 7-18 Simulación inicial del modelo SWAT con punto de calibración en la estación Huatiapa

7.6.2 Calibración manual del modelo SWAT

El criterio que se ha tomado para establecer los rangos adecuados de los parámetros más sensibles para la calibración, depende según la estación a evaluar. Tal como se aprecia en la simulación inicial, se presenta subestimaciones en los periodos de estiaje y pequeños desfases de los caudales picos simulados, debido a ello los parámetros más influyentes son modificados correspondiendo a la necesidad de disponer más caudal en estiaje y la de ajustar mejor el desfase que el modelo genera. Como estrategia de calibración, se ha de mencionar que dentro de la estructura del SWAT el flujo es dividido en flujo superficial (Q_{sup}), flujo lateral (Q_{lat}), flujo de retorno del acuífero superficial (Q_{gws}) y flujo de retorno del acuífero profundo (Q_{gwd}). Distintos parámetros gobiernan el aporte de cada uno de estos flujos, los cuales fueron tomados en cuenta para dar inicio a la calibración manual e identificación de los parámetros más sensibles.

7.6.3 Análisis de sensibilidad de los principales parámetros del modelo SWAT

Se realizó un análisis de sensibilidad de los parámetros que gobiernan el aporte hídrico para el modelo SWAT. En esta sección se analiza el rango de los valores más adecuado de cada parámetro que se pueden considerar como los más influyentes. Estos tienen implicancia directa en la producción de los flujos superficial (Q_{sup}) , lateral (Q_{lat}) y subterráneo (Q_{gw}) de la cuenca.

Tal como se puede apreciar en la Tabla 7-15 hay una notoria subestimación de caudales en los periodos de estiaje, en base a ello un primer análisis de los parámetros que gobiernan el aporte del flujo subterráneo fue realizado. Cabe mencionar, que hubo parámetros que no fueron considerados en el análisis de incertidumbre. Ellos fueron obtenidos a partir de la información proporcionada por AUTODEMA.

Tabla 7-15. Parámetros considerados como constantes y no sujetos al análisis de incertidumbre. Parámetros correspondientes a los embalses en la cuenca Camaná Majes.

Variaciones	Condiciones	Condoroma	El Pañe	Dique Los Españoles
YRES	Año de inicio operacional	1985	1962	1992
RES_ESA (ha)	Área superficial al vertedero de emergencia	2000	1406.21	620.48
RES_EVOL (10^4 m3)	Volumen al vertedero de emergencia	28500	14091	1325
RES_PSA (ha)	Área superficial al vertedero principal	1500	1370.06	569.8
RES_PVOL (10^4 m3)	Volumen al vertedero principal	25900	9961	1193
RES_RR (m3/s)	Caudal de descarga promedio del vertedero principal	1300	45	56
NAME	Nivel de aguas extraordinario	4155	4539.4	4419.7
NAMO	Nivel de aguas ordinario	4151	4538.4	4419

Fuente: AUTODEMA

- Parámetros de mayor influencia para el Q_{sup}

En cuanto a los parámetros que influyen en la cuantificación del flujo superficial, el número de curva (CN2) es el que mayor impacto genera. Es un parámetro muy sensible, cuyo aumento (disminución) produce un mayor (menor) aporte superficial y disminución (incremento) del índice de Nash. Cabe mencionar que si bien la reducción del CN2 mejora el desempeño del modelo, se debe tener en cuenta que se pierde el significado físico del proceso hidrológico de la cuenca al aumentar el aporte del Q_{lat} y Q_{gw} lo que conllevaría a que el modelo genere el aporte hídrico únicamente del flujo base y muy poco aporte del Q_{sup}. Sin embargo, el análisis del parámetros SURLAG y CH_N (ver descripción en la Tabla 6-16) permitió mejorar considerablemente la bondad de ajuste del modelo sin la necesidad de alterar el aporte de flujo de los distintos niveles del SWAT. Estos parámetros al estar más relacionados a los tiempos de respuesta del hidrograma, permiten ajustar las descargas simuladas y su consecuente mejora del índice de Nash. Cabe mencionar que la cuantificación correcta del rango de sus valores es muy importante, debido a que a partir de cierto umbral, son incapaces de representar correctamente los eventos de altas descargas. Para efectos del presente estudio se vio conveniente considerar SURLAG mayores a 0.7 y CH_N entre 0.1 y 0.15; valores correspondientes a números de Manning de canales naturales (Tabla 7-16).

Tabla 7-16. Valores de Manning recomendados para canales abiertos (excavados y naturales)

Características del canal	Mediana	Rango
Excavated or dredged	_	
Earth, straight and uniforme	0.025	0.016 - 0.033
Earth, winding and sluggish	0.035	0.023-0.050
Not Maintained weeds and brush	0.075	0.040-0.140
Natural streams		
Few trees, stones or brush	0.050	0.025-0.065
Heavy timber and brush	0.100	0.050-0.150

Fuente: Chow (1959 en http://swat.tamu.edu/media/69296/SWAT-IO-Documentation-2012.pdf

- Parámetros de mayor influencia para el Q_{sup}, Q_{lat} y Q_{gw}

Se evaluaron los parámetros del suelo más influyentes. Se consideraron para el análisis la densidad aparente (SOL_BD) la conductividad hidráulica del suelo (SOL_K) y la capacidad de agua disponible (SOL_AWC). De estos tres parámetros el más importante fue SOL_AWC, parámetro permite cuantificar la cantidad de agua disponible en el suelo para el proceso de evapotranspiración; el cual indicó que el valor correcto a ser tomado debería variar relativamente entre -0.42 a -0.4, rango que disminuye la cantidad a evapotranspirar y en consecuencia hay menor pérdida de agua en el sistema y mayor aporte del mismo. Tiene una gran influencia para el aumento (reducción) del flujo lateral a medida que va disminuyendo (incrementando) la variación relativa de su valor y mejorando (reduciendo) el desempeño del modelo en base al índice de Nash.

SOL_BD ha sido la más influyente en la reducción del ligero desfase que existe entre los hidrogramas simulados y observados. Este desfase está vinculado con la respuesta retardada del flujo lateral ya que de acuerdo a los datos de suelo los valores iniciales corresponden a suelos muy pesados (arcillosos). De tal manera, un aumento relativo entre 0.3 a 0.5 permite tener un mejor empalme y asociarlos a suelos menos pesados (limosos, arenosos) incrementando la eficiencia del modelamiento según el índice de Nash.

- Parámetros de mayor influencia para el Q_{gw}

Estos parámetros me permiten cuantificar mejor al aporte hídrico del acuífero superficial y profundo. Se identificaron cinco parámetros: RCHRG_DP, GWQMN y SHALLST. De entre ellos el más importante fue el RCHRG_DP, que es la fracción que recarga el acuífero profundo desde la zona de raíces. El aumento (disminución) de su valor incrementa (reduce) el aporte hídrico del acuífero y tiende a producir un exceso (déficit) del mismo perdiendo el sentido físico del modelo. El rango establecido para su calibración fue de 0.5 a 0.6.

Parámetros como GWQMN y SHALLST, gobiernan el estado inicial del acuífero superficial y a partir de que umbral permite que ocurra el flujo de retorno. Para un mejor ajuste del índice de Nash y para reducir la subestimación en los periodos de estiaje, sus valores deben estar en el rango de 700-750 y 1300-1500 respectivamente.

7.6.4 Calibración semiautomática mediante el algoritmo *Sequential Uncertainty Fitting* (SUFI2)

La calibración semiautomática se llevó a cabo en el programa SWAT-CUP. A partir de los rangos obtenidos del análisis de sensibilidad (Tabla 7-17), los siete parámetros considerados fueron calibrados de acuerdo a la función objetivo del criterio de Nash y a partir de dos simulaciones de 500 iteraciones cada uno.

Tabla 7-17. Valores mínimos y máximos de los parámetros más sensibles. Valores de los parámetros del modelo SWAT calibrado. En la columna que corresponde al código del parámetro "v" ("r") indica que el parámetro fue: sustituido por un cierto valor del rango (multiplicado por 1 + cierto valor de cambio relativo).

Parámetros	Descripción	Valor Mínimo	Valor Máximo
r_SOL_AWC	Contenido de agua en el suelo para aprovechamiento de las plantas	-0.42	-0.4
v_RCHRG_DP	Recarga hídrica desde la zona de raíces hasta el acuífero profundo	0.5	0.6
r_SOL_BD	Densidad aparente del suelo.	0.3	0.5
v_SHALLST	Umbral inicial [mm] del acuífero superficial	1300	1500
v_GWQMIN	Umbral mínimo [mm] del acuífero superficial para que ocurra el flujo de retorno	700	750
v_CH_N	Numero de Manning para los canales (ríos) tributarios.	0.1	0.15

7.6.5 Simulación a paso de tiempo diario

Según lo propuesto por Moriasi et al. (2007), los resultados del proceso de calibración semiautomática permitió cuantificar correctamente los caudales medios diarios (NSE/PBIAS: 0.63/ - 0.6) para el periodo de 01/01/2002 – 31/12/2010. Las métricas decrecen para el periodo de validación establecido entre 01/01/2011 hasta 31/12/2016, pero con valores satisfactorios (NSE/PBIAS: 0.74/ 1.9). En relación al PBIAS, presenta un buen desempeño con ligera subestimación (sobreestimación) para el periodo de calibración (validación).

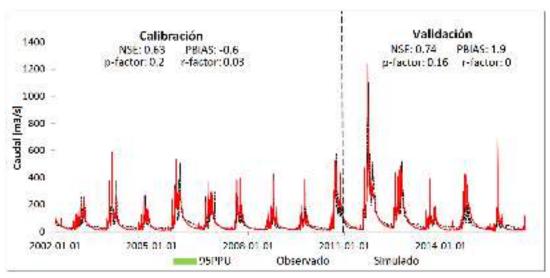


Figura 7-19. Comparativa de los caudales medios diarios simulados respecto al observado. Se indica las métricas de desempeño y la banda de incertidumbre al intervalo de predicción del 95% [995PPU].

Se observa que las medidas de incertidumbre mejoran. Así de acuerdo a p-factor la banda de 95PPU contiene 20% (16%) de las observaciones con una estrecha banda de incertidumbre dado por r-factor de 0.03 (0) en el periodo de calibración (validación). Según Estos valores obtenidos son aceptables y hacen referencia a un buen desempeño del modelo.

7.6.6 Simulación a paso de tiempo mensual

A nivel mensual la tendencia se mantiene (con resultados muy buenos), es decir, que para el periodo de calibración (NSE/PBIAS: 0.85/-1.1) se obtienen mejor desempeño que el periodo de validación (NSE/PBIAS: 0.87/10.9). Las medidas de incertidumbre mejoran. Así de acuerdo a p-factor la banda de 95PPU contiene 24% (20%) de las observaciones con una estrecha banda de incertidumbre dado por r-factor de 0.03 (0) en el periodo de calibración (validación).

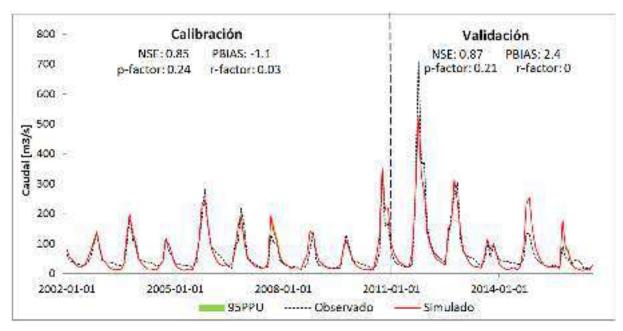


Figura 7-20. Comparativa de los caudales medios diarios simulados respecto al observado.

Se indica las métricas de desempeño y la banda de incertidumbre al intervalo de predicción del 95% [995PPU]

Tabla 7-18. Resumen de estadísticos del periodo de calibración y validación a partir del SUFI2

	Calibración [01/01/2002 - 31/12/2010]					Validación [01/01/2011 - 31/12/2016]		
Estación	NSE	PBIAS	p-factor	r-factor	NSE	PBIAS	p-factor	r-factor
Huatiapa [paso diario]	0.63	-0.6	0.2	0.03	0.74	1.9	0.24	0.03
Huatiapa [paso mensual]	0.85	-1.1	0.24	0.03	0.87	10.9	0.2	0

7.6.7 Balance hídrico de la cuenca del río Camaná Majes

El modelo SWAT caracteriza los diferentes procesos; siendo la precipitación, la escorrentía superficial, el flujo base (el flujo lateral más el flujo de retorno desde los acuíferos) y la evapotranspiración los elementos más importantes del balance hídrico. Así, para una mejor comprensión de los diferentes procesos que ocurren dentro de la cuenca del río Camaná Majes se presenta la cuantificación en mm de los diferentes componentes del balance hídrico en base al modelo SWAT calibrado.

La Tabla 7-19 muestra para la cuenca del río Camaná Majes el rendimiento hídrico es mayormente producido por la contribución del flujo base. En función al IFB la cuenca aporta flujo base (flujo de escorrentía superficial) en un 86.5% (13.5%) en promedio (de los periodos de calibración y validación) del total del rendimiento hídrico.

Tabla 7-19Balance de masa anual del rendimiento hídrico de la cuenca. Q_{surf}, Q_{lat}, Q_{gws} y Q_{gwd} son los aportes de flujo superficial, lateral, del acuífero superficial y del acuífero profundo.

Balance de masa anual	Sin calibración 2002-2010	Calibración 2002-2010	Validación 2011-2016
Rendimiento de la cuenca			
Rendimiento hídrico (WYLD=Qsurf+Qlat+Qgws+Qgwd) [mm]	101.07	129.31	174.15
Contribución de escorrentía superficial (Qsurf) [mm]	16.16	16.43	24.69
Contribución de flujo base (FB=Qlat+Qgws+Qgwd) [mm]	84.91	112.88	149.46
Flujo Lateral (Qlat) [mm]	25.06	36.97	43.92
Flujo de retorno desde el acuífero superficial (Qgws) [mm]	54.6	24.93	42.03
Flujo de retorno desde el acuífero profundo (Qgwd) [mm]	5.25	50.98	63.51
Índice de flujo base (IFB)	0.84	0.87	0.86

7.6.8 Balance hídrico de las subcuencas del río Camaná Majes

Como una primera visualización del comportamiento hídrico de la cuenca del río Camaná Majes se adjunta la Figura 7-21 esta estimación se hizo en base al periodo de análisis 1981-2010.

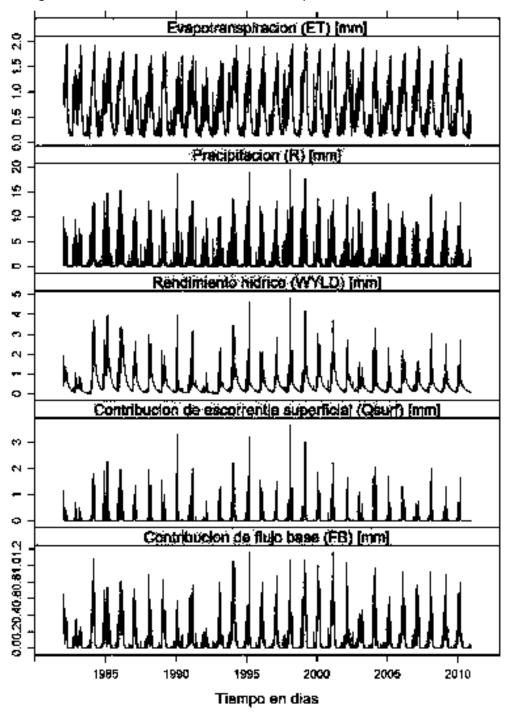


Figura 7-21 Evolución temporal promedio diario de precipitación, evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de flujo base a nivel de la cuenca integral Camaná-Majes

La distribución promedio diaria de las variables de precipitación, evapotranspiración, rendimiento hídrico, contribución de la escorrentía superficial y contribución de flujo base para cada subcuenca se presenta en el Anexo del capitulo.

Tabla 7-20. Balance hídrico promedio anual (periodo 1981 – 2010) de la cuenca del río Camaná Majes

Componentes del balance hídrico anual	Periodo
	1981-2010
Aportes y pérdidas del sistema	
Precipitación (R) [mm]	356.3
Evapotranspiración actual (ET) [mm]	201.8
Evapotranspiración potencial (ETP) [mm]	1254.5
Rendimiento en la salida de la cuenca	
Rendimiento hídrico (WYLD=Qsup+Qlat+Qgws+Qgwd) [mm]	127.12
Contribución de escorrentía superficial (Q _{sup}) [mm]	18.82
Contribución de flujo base (FB=Q _{lat} +Q _{gws} +Q _{gwd}) [mm]	108.3
Flujo Lateral (Q _{lat}) [mm]	39.99
Flujo de retorno desde el acuífero profundo (Q _{gwd}) [mm]	10.94
Flujo de retorno desde el acuífero profundo (Qgwd) [mm]	57.37

Para caracterizar el potencial del rendimiento hídrico de la cuenca en la Figura 7-22 se muestra la caracterización espacial del rendimiento hídrico promedio anual (periodo 1981-2010) y sus componentes en porcentaje de contribución de la escorrentía superficial y el flujo base. Donde se puede apreciar que las sub-cuencas ubicadas a la salida de la cuenca tienen rendimientos más bajos (0 - 50 mm/año) debido que esta parte de la cuenca experimenta bajas tasas de precipitación propias de las costas de las cuencas de la vertiente del Pacífico. Mientras tanto la parte alta de la cuenca se presentan rendimientos más altos (100 - 400 mm/año). La mayor contribución al rendimiento hídrico está dado por el flujo base, sin embargo, en la parte baja de la cuenca existe un mayor aporte de la escorrentía superficial. Esto ocurre debido al aporte de caudal que realiza el reservorio de Condoroma para la irrigación de las pampas de Majes objetivo principal del proyecto Majes-Siguas. El aporte superficial, que varía en un porcentaje de 40% a 70% influye en la caracterización hídrica y tiene mayor implicancia en la parte baja de la cuenca Camaná Majes.

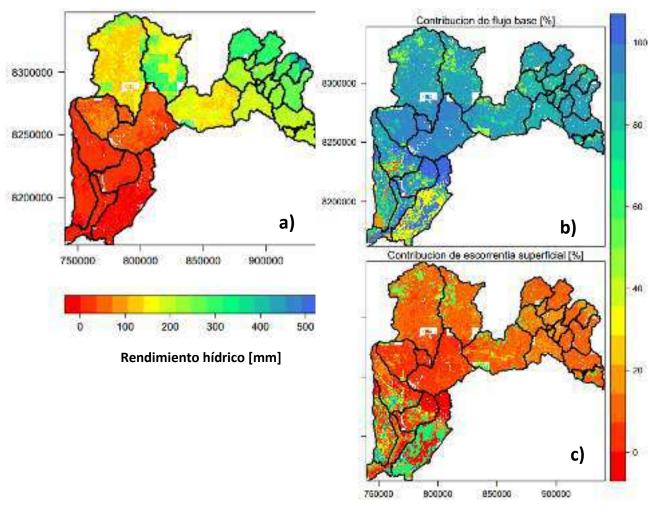


Figura 7-22 Distribución espacial a nivel de HRUs de: a) rendimiento hídrico (WYLD en mm) (Izquierda), b) contribución de flujo base (derecha superior) y c) contribución de la escorrentía superficial (derecha inferior).

Por otro parte, el comportamiento multianual por cada mes indica que hay una estacionalidad bien definida de los caudales. El periodo de mayor contribución hídrica se da entre los meses de Febrero y Marzo. El periodo de más baja contribución se da en los meses de Setiembre y Octubre. Este comportamiento no es homogéneo para todas las subcuencas (Figura 7-23 y 24) en donde la distribución de los caudales varía notoriamente. Algunas subcuencas tienen mayor aporte por una mayor cantidad de tiempo, mientras que en otras tienen marcadas diferencias en los aportes durante los periodos de avenida (Diciembre-Abril) y estiaje (Mayo-Noviembre).

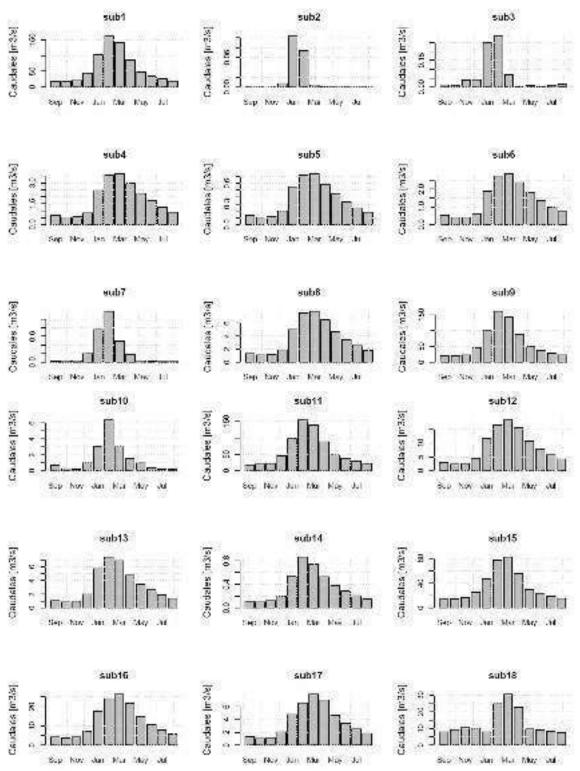


Figura 7-23 Representación de los caudales medios mensuales. Presentación de la subcuenca uno a la dieciocho del modelo SWAT de Camaná Majes. Período de evaluación 1981-2010.

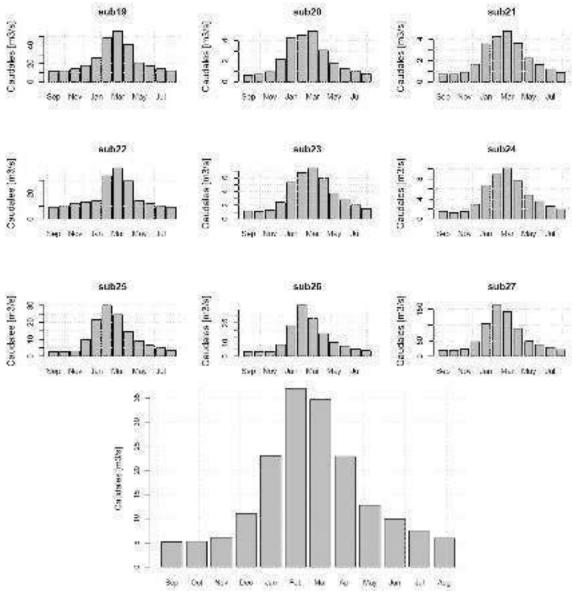


Figura 7-24 Representación de los caudales medios mensuales. En la parte superior, Presentación de la subcuenca diecinueve a laveintisiete del modelo SWAT de Camaná Majes. En la parte inferior, los caudales medios para toda la cuenca del río Camaná Majes. Período de evaluación 1981-2010.

En el Anexo – Capitulo VII se muestra los caudales medios mensuales (período 1981-2010) para cada subcuenca de la cuenca del rio Ocoña y Camana.

Tabla 7-21 Precipitación (R), Evapotranspiración real (ET), Rendimiento hídrico (WYLD), Contribución del flujo base (FB), Flujo superficial (Q_{sup}), Flujo lateral (Q_{lat}), Flujo del acuífero superficial (Q_{gws}) y Flujo del acuífero profundo (Q_{gwd}) para cada subcuenca del modelo SWAT en la cuenca del río Camaná Majes. Los valores presentados corresponden a los promedios multianuales del periodo 1981-2010.

Rendimiento hídrico	R [mm]	ET [mm]	WYLD [mm]	Q _{sup} [mm]	FB [mm]	Q _{lat} [mm]	Q _{gws} [mm]	Q _{gwd} [mm]
Subcuenca 1	55.41	53.81	2.09	0.10	1.99	1.99	0.00	0.00
Subcuenca 2	64.49	64.12	0.75	0.10	0.65	0.65	0.00	0.00
Subcuenca 3	90.62	88.24	2.93	0.33	2.60	2.60	0.00	0.00
Subcuenca 4	486.48	640.99	188.21	26.39	161.82	27.28	22.68	111.86
Subcuenca 5	486.52	245.42	188.17	39.41	148.76	13.94	22.89	111.94
Subcuenca 6	532.51	271.58	201.21	36.43	164.78	10.98	26.31	127.49
Subcuenca 7	209.25	158.10	49.90	1.07	48.83	45.97	0.11	2.76
Subcuenca 8	528.49	262.08	204.56	24.15	180.41	27.21	24.92	128.29
Subcuenca 9	101.06	91.63	9.50	1.37	8.13	7.79	0.00	0.34
Subcuenca 10	303.27	241.20	57.82	4.48	53.35	44.48	0.54	8.33
Subcuenca 11	221.05	173.45	44.10	1.36	42.74	35.82	0.34	6.58
Subcuenca 12	570.32	272.32	233.85	27.03	206.83	42.59	28.02	136.22
Subcuenca 13	497.22	258.14	187.93	26.87	161.06	44.78	16.44	99.84
Subcuenca 14	565.20	257.27	244.33	44.86	199.47	44.01	24.78	130.68
Subcuenca 15	460.77	268.69	160.58	27.02	133.56	64.87	8.69	60.00
Subcuenca 16	570.51	272.29	232.80	33.76	199.04	39.13	25.59	134.32
Subcuenca 17	614.50	286.08	261.66	29.94	231.72	22.13	44.57	165.02
Subcuenca 18	584.99	277.10	241.66	39.29	202.37	37.75	27.01	137.61
Subcuenca 19	550.62	287.62	214.00	38.98	175.03	62.38	16.31	96.34
Subcuenca 20	673.33	267.12	348.97	65.59	283.38	101.63	38.92	142.83
Subcuenca 21	654.15	284.89	306.51	47.58	258.93	57.73	43.53	157.67
Subcuenca 22	607.39	302.78	246.44	40.61	205.83	65.38	21.93	118.52
Subcuenca 23	683.34	322.28	295.34	34.29	261.05	59.23	42.06	159.77
Subcuenca 24	674.93	312.25	298.08	43.97	254.11	59.64	39.71	154.76
Subcuenca 25	504.06	233.54	224.51	39.72	184.79	79.43	14.71	90.65
Subcuenca 26	444.18	253.60	155.91	23.16	132.76	56.66	9.61	66.49
Subcuenca 27	50.50	46.35	4.50	0.18	4.33	4.33	0.00	0.00

La Figura 7-25 ilustra globalmente la magnitud de la oferta hídrica anual que el modelo SWAT estima en cada una de las unidades hidrográficas identificadas en la cuenca del río Camaná-Majes, donde se puede apreciar que el sistema hídrico del río Colca (punto de cierre Sc 15) produce un caudal promedio anual de 34.8 m³/s. En la subcuenca Capiza (punto de cierre Sc 10) que recibe aportes de deshielo del Coropuna, la oferta hídrica anual alcanza en promedio 1.48 m³/s. la menor oferta de agua se presenta en las subcuencas de Paluviñas (punto de cierre Sc 3) y Molles (punto de cierre Sc 2) con un caudal promedio anual de 0.06 m³/s y 0.02 m³/s, respectivamente.

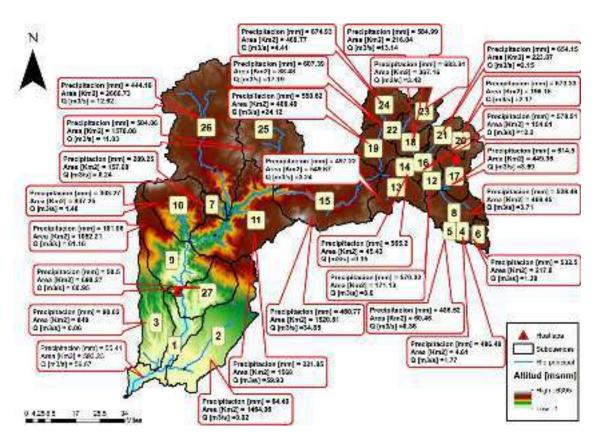


Figura 7-25 Oferta hídrica anual en m³/s en cada unidad hidrográfica de la cuenca Camaná-Majes periodo 1981-2010

7.7 Caracterización de la oferta hídrica presente en la cuenca del río Ocoña a escala de subcuencas

La Figura 7-26 muestra el caudal promedio multianual representativo del periodo 1981-2016, para cada una de las 20 subcuencas comprendida en la cuenca del rio Ocoña, evaluadas con fines del presente Estudio. En general, se aprecia que la Intercuenca Medio Bajo Ocoña (Sub-19) es la que presenta mayor oferta hídrica con 110.5 m³/s y las subcuencas Churunga, Chalhuane, Esbilla y Bajo Churunga son las que prsentan menor oferta hídrica en el orden de 0.1 a 0.6 m3/s (Sub 15, 16, 17 y 18) y la que sigue es la subcuenca Parinacochas (Sub-11) con 1.8 m³/s.

Figura 7-26 Caudal promedio anual en la línea base 1981-2016

A continuación se presenta los caudales mensuales y anuales característicos de un año seco, normal y húmedo representativos del periodo 1981-2016 para cada una de las subcuencas comprendida en la cuenca del rio Ocoña.

7.7.1 Caracterización de la oferta hídrica Subcuenca Pacapausa

La Figura 7-27 muestra los caudales medios multianuales generados a la salida de la subcuenca Pacapausa (Sub-1) que corresponden a un área de drenaje de 593.3 Km2. La Tabla 7-22 indican que el caudal promedio multianual de la subcuenca, en años húmedos crece a 93.8 m3/s y en años secos puede bajar a 30.8 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 147.5 m3/s (febrero) y en estiaje llega a valores mínimos de 16.8 m3/s (octubre).

Figura 7-27 Síntesis de caudales anuales generados en la Sub1 - Subcuenca Pacapausa

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	593.3	
Caudal promedio anual	m³/s	60.2	
Caudal máximo	m³/s	349.7	A
Caudal mínimo	m³/s	0.0	Lepesda
Caudal promedio anual en años secos	m³/s	30.8	(Basiques)
Caudal promedio anual en años húmedos	m³/s	93.8	- 100 tan
Caudal promedio anual al 50% persistencia	m³/s	55.8	- San
Caudal promedio anual al 75% persistencia	m³/s	43.7	- Rea
Caudal promedio anual al 90% persistencia	m³/s	39.8	
Caudal promedio anual en años "Niño"	m³/s	67.5	/ Total 10 10 10 10 10 10 10 1
Caudal promedio anual en años "La Niña"	m³/s	69.2	
Volumen máximo disponible	MMC	2920.2	
Volumen mínimo disponible	ММС	966.8	

Tabla 7-22 Caudales promedios en año seco, normal y húmedo en la Sub 1 - Subcuenca Pacapausa

	Climatología de caudales en año seco, normal y húmedo (m3/s)												
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	9.4	11.4	13.7	41.6	60.4	64.6	75.5	37.3	19.3	15.7	11.5	9.3	30.8
Normal	16.9	16.8	19.5	34.2	112.6	147.5	135.4	82.0	44.1	33.1	24.3	18.8	57.1
Húmedo	25.7	26.6	31.3	63.7	130.6	278.0	215.3	142.9	78.8	57.9	43.1	31.4	93.8

7.7.2 Caracterización de la oferta hídrica Sub 2 - Intercuenca

La Figura 7-28 muestra los caudales medios multianuales generados a la salida de la Intercuenca (Sub-2) que corresponden a un área de drenaje de 1.8 Km2. La Tabla 7-23 indica que el caudal promedio multianual en la Intercuenca, en años húmedos crece a 29.6 m3/s y en años secos puede bajar a 12.2 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 53.2 m3/s (marzo) y en estiaje llega a valores mínimos de 5.1 m3/s (noviembre).

Figura 7-28 Síntesis de caudales anuales generados en la Sub 2 - Intercuenca

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	1.8	
Caudal promedio anual	m³/s	20.7	
Caudal máximo	m³/s	102.7	
Caudal mínimo	m³/s	1.9	ettet!
Caudal promedio anual en años secos	m³/s	12.2	
Caudal promedio anual en años húmedos	m³/s	29.6	F 1999
Caudal promedio anual al 50% persistencia	m³/s	20.5	
Caudal promedio anual al 75% persistencia	m³/s	15.4	Shaper Market
Caudal promedio anual al 90% persistencia	m³/s	14.6	the laster
Caudal promedio anual en años "Niño"	m³/s	23.3	
Caudal promedio anual en años "La Niña"	m³/s	23.9	
Volumen máximo disponible	MMC	925.1	
Volumen mínimo disponible	MMC	384.0	

Tabla 7-23 Caudales promedios en año seco, normal y húmedo en la Sub 2 - Intercuenca

Climatología de caudales en año seco, normal y húmedo (m3/s)													
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	4.4	3.4	3.1	9.0	15.2	23.9	30.7	23.7	12.7	8.9	6.8	5.2	12.2
Normal	6.9	5.5	5.1	9.5	17.4	41.6	53.2	42.6	27.4	15.3	11.8	8.8	20.4
Húmedo	9.2	7.5	5.9	10.4	32.5	72.7	75.5	55.6	37.1	21.3	15.9	11.9	29.6

7.7.3 Caracterización de la oferta hídrica Sub 3 - Subcuenca Pallancata

La Figura 7-29 muestra los caudales medios multianuales generados a la salida de la subcuenca Pallancata (Sub-3) que corresponden a un área de drenaje de 974.4 Km2. La Tabla 7-24 indica que el caudal promedio multianual de la subcuenca, en años húmedos crece a 19.2 m3/s y en años secos puede bajar a 9.6 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 36.1 m3/s (marzo) y en estiaje llega a valores mínimos de 3.5 m3/s (octubre).

Figura 7-29 Síntesis de caudales anuales generados en la Sub 3 - Subcuenca Pallancata

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	974.4	
Caudal promedio anual	m³/s	13.9	
Caudal máximo	m³/s	74.3	- Andrew
Caudal mínimo	m³/s	1.5	
Caudal promedio anual en años secos	m³/s	9.6	
Caudal promedio anual en años húmedos	m³/s	19.2	
Caudal promedio anual al 50% persistencia	m³/s	14.0	And the second s
Caudal promedio anual al 75% persistencia	m³/s	11.2	- 177.00 - 177.00
Caudal promedio anual al 90% persistencia	m³/s	9.8	Total State of the
Caudal promedio anual en años "Niño"	m³/s	15.4	in agent
Caudal promedio anual en años "La Niña"	m³/s	15.8	
Volumen máximo disponible	MMC	600.0	
Volumen mínimo disponible	MMC	300.0	

Tabla 7-24 Caudales promedios en año seco, normal y húmedo en las Sub 3 -Subcuenca Pallancata

	Climatología de caudales en año seco, normal y húmedo (m3/s)												
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	3.0	2.5	3.4	11.1	15.4	22.3	22.6	15.2	7.4	5.1	4.1	3.0	9.6
Normal	4.0	3.5	5.1	11.2	17.4	33.3	36.1	24.6	13.7	8.1	6.6	4.7	14.0
Húmedo	5.2	4.6	4.4	10.4	29.5	53.0	50.5	30.1	18.3	10.6	8.1	6.0	19.2

7.7.4 Caracterización de la oferta hídrica Sub 4 - Subcuenca Pacchichaca

La Figura 7-30 muestra los caudales medios multianuales generados a la salida de la subcuenca Pacchichaca (Sub-4) que corresponden a un área de drenaje de 220.7 Km2. La Tabla 7-25 indican que el caudal promedio multianual de la subcuenca, en años húmedos crece a 3.6 m3/s y en años secos puede bajar a 1.4 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 5.7 m3/s (marzo) y en estiaje llega a valores mínimos de 0.5 m3/s (noviembre).

Figura 7-30 Síntesis de caudales anuales generados en la Sub 4 - subcuenca Pacchichaca

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	220.7	
Caudal promedio anual	m³/s	2.3	
Caudal máximo	m³/s	12.9	
Caudal mínimo	m³/s	0.1	
Caudal promedio anual en años secos	m³/s	1.4	
Caudal promedio anual en años húmedos	m³/s	3.6	
Caudal promedio anual al 50% persistencia	m³/s	2.4	
Caudal promedio anual al 75% persistencia	m³/s	1.6	tion.
Caudal promedio anual al 90% persistencia	m³/s	1.5	100 cm cm
Caudal promedio anual en años "Niño"	m³/s	2.6	Man
Caudal promedio anual en años "La Niña"	m³/s	2.9	
Volumen máximo disponible	MMC	111.3	
Volumen mínimo disponible	MMC	43.0	

Tabla 7-25 Caudales promedios en año seco, normal y húmedo en la Sub 4 - Subcuenca Pacchichaca

Climatología de caudales en año seco, normal y húmedo (m3/s)													
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	0.5	0.4	0.3	0.7	1.6	2.3	3.7	2.8	1.6	1.1	0.8	0.6	1.4
Normal	0.8	0.7	0.5	0.7	1.4	4.9	5.7	4.9	3.2	1.8	1.4	1.1	2.3
Húmedo	1.1	0.9	0.7	0.9	3.4	8.4	9.6	6.9	4.6	2.6	2.0	1.5	3.6

7.7.5 Caracterización de la oferta hídrica Sub 5- Subcuenca Alto Cotahuasi

La Figura 7-31 muestra los caudales medios multianuales a la salida de la subcuenca Alto Cotahuasi (Sub-5) que corresponden a un área de drenaje de 13.53 Km2. La Tabla 7-26 indica que el caudal promedio multianual de la subcuenca, en años húmedos crece a 0.199 m3/s y en años secos puede bajar a 0.082 m3/s.

Figura 7-31 Síntesis de caudales anuales generados en la Sub 5 - Subcuenca Alto Cotahuasi

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	1334.0	
Caudal promedio anual	m³/s	18.0	
Caudal máximo	m³/s	92.4	
Caudal mínimo	m³/s	1.6	AND THE REAL PROPERTY.
Caudal promedio anual en años secos	m³/s	12.6	THE REPORT OF THE
Caudal promedio anual en años húmedos	m³/s	24.6	A SECTION OF THE PERSON OF THE
Caudal promedio anual al 50% persistencia	m³/s	18.2	
Caudal promedio anual al 75% persistencia	m³/s	14.7	
Caudal promedio anual al 90% persistencia	m³/s	13.6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Caudal promedio anual en años "Niño"	m³/s	19.7	
Caudal promedio anual en años "La Niña"	m³/s	20.7	2 100
olumen máximo disponible	MMC	766.5	
/olumen mínimo disponible	MMC	393.3	

Tabla 7-26 Caudales promedios en año seco, normal y húmedo en la Sub 5 - Subcuenca Alto Cotahuasi

Climatología de caudales en año seco, normal y húmedo (m3/s)													
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	4.5	3.5	4.1	16.5	23.2	30.5	27.8	17.6	8.3	5.8	5.4	3.5	12.6
Normal	5.4	4.7	7.0	16.0	29.1	48.4	41.6	26.9	14.4	8.9	8.4	5.4	18.0
Húmedo	7.4	6.1	5.7	16.2	47.0	71.6	59.7	33.1	19.8	11.7	9.7	7.0	24.6

7.7.6 Caracterización de la oferta hídrica Sub 6 - Subcuenca De Sumana

La Figura 7-32 muestra los caudales medios multianuales generados a la salida de la subcuenca De Sumana (Sub-6) que corresponden a un área de drenaje de 773.3 Km2. La Tabla 7-27 indica que el caudal promedio multianual de la subcuenca, en años húmedos crece a 11.7 m3/s y en años secos puede bajar a 4.9 m3/s.

Figura 7-32 Síntesis de caudales anuales generados en la Sub 6 - Subcuenca De Sumana

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	773.3	
Caudal promedio anual	m³/s	8.3	
Caudal máximo	m³/s	41.8	420
Caudal mínimo	m³/s	0.5	A STATE OF THE PARTY OF THE PAR
Caudal promedio anual en años secos	m³/s	4.9	
Caudal promedio anual en años húmedos	m³/s	11.7	All the state of t
Caudal promedio anual al 50% persistencia	m³/s	8.5	The second
Caudal promedio anual al 75% persistencia	m³/s	6.2	200
Caudal promedio anual al 90% persistencia	m³/s	6.1	age.
Caudal promedio anual en años "Niño"	m³/s	9.1	2 years
Caudal promedio anual en años "La Niña"	m³/s	9.7	
Volumen máximo disponible	MMC	366.0	
Volumen mínimo disponible	MMC	154.1	

Tabla 7-27 Caudales promedios en año seco, normal y húmedo en la Sub 6 - Subcuenca De Sumana

	Climatolo	gía de	cauda	les en	año se	co, no	rmal y	húme	do (ma	3/s)			
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	1.6	1.3	1.2	5.7	9.1	10.4	11.3	7.8	3.9	2.8	2.3	1.6	4.9
Normal	2.5	2.1	2.3	5.5	11.3	20.7	19.7	14.2	8.0	5.1	4.1	2.9	8.2
Húmedo	3.4	2.9	2.5	5.8	19.0	31.2	28.9	18.8	11.7	7.0	5.4	4.0	11.7

7.7.7 Caracterización de la oferta hídrica Sub 7 – Subcuenca Pampamarca

La Figura 7-33 muestra los caudales medios multianuales generados a la salida de la subcuenca Pampamarca (Sub-7) que corresponden a un área de drenaje de 655.1 Km2. La Tabla 7-28 indica que el caudal promedio multianual de la subcuenca, en años húmedos crece a 10.5 m3/s y en años secos puede bajar a 4.2 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 15.7 m3/s (febrero) y en estiaje llega a valores mínimos de 1.7 m3/s (noviembre).

Figura 7-33 Síntesis de caudales anuales generados en la Sub 7 - Subcuenca Pampamarca

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	655.1	
Caudal promedio anual	m³/s	7.3	
Caudal máximo	m³/s	41.4	
Caudal mínimo	m³/s	0.5	
Caudal promedio anual en años secos	m³/s	4.2	
Caudal promedio anual en años húmedos	m³/s	10.5	The state of the s
Caudal promedio anual al 50% persistencia	m³/s	7.6	- 100 - 100
Caudal promedio anual al 75% persistencia	m³/s	5.5	
Caudal promedio anual al 90% persistencia	m³/s	5.0	minut.
Caudal promedio anual en años "Niño"	m³/s	8.1	Labora
Caudal promedio anual en años "La Niña"	m³/s	8.9	
Volumen máximo disponible	MMC	327.2	
Volumen mínimo disponible	MMC	131.9	

Tabla 7-28 Caudales promedios en año seco, normal y húmedo en la Sub 7 - Subcuenca Pampamarca

C	limatolo	gía de	cauda	les en	año se	co, no	rmal y	húme	do (ma	3/s)			
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	1.8	1.3	1.2	5.0	6.7	8.6	9.8	6.8	3.4	2.5	2.1	1.5	4.2
Normal	2.2	1.8	1.7	4.5	8.9	15.7	15.6	11.4	6.2	4.1	3.3	2.4	6.5
Húmedo	3.6	2.8	2.1	4.8	15.5	29.0	25.6	17.0	10.6	6.4	5.0	3.7	10.5

7.7.8 Caracterización de la oferta hídrica Sub 8 - Subcuenca Mirmaca

La Figura 7-34 muestra los caudales medios multianuales generados a la salida de la subcuenca Mirmaca (Sub-8) que corresponden a un área de drenaje de 1066.7 Km2. La Tabla 7-29 indica que el caudal promedio multianual de la subcuenca, en años húmedos crece a 15.3 m3/s y en años secos puede bajar a 3.9 m3/s.

Figura 7-34 Síntesis de caudales anuales generados en la Sub 8 - Subcuenca Mirmaca

Caudales	Unidad	Valor	Unidad Hidrográfica
Area drenaje	Km²	1066.7	
Caudal promedio anual	m³/s	9.2	
Caudal máximo	m³/s	59.7	and the same
Caudal mínimo	m³/s	0.1	
Caudal promedio anual en años secos	m³/s	3.9	
Caudal promedio anual en años húmedos	m³/s	15.3	
Caudal promedio anual al 50% persistencia	m³/s	9.3	
Caudal promedio anual al 75% persistencia	m³/s	5.4	
audal promedio anual al 90% persistencia	m³/s	5.0	100
audal promedio anual en años "Niño"	m³/s	10.2	
audal promedio anual en años "La Niña"	m³/s	12.1	
olumen máximo disponible	MMC	478.4	
olumen mínimo disponible	MMC	123.0	

Tabla 7-29 Caudales promedios en año seco, normal y húmedo en la Sub 8 - Subcuenca Mirmaca

	Climatolo	gía de	cauda	les en	año se	co, no	rmal y	húme	do (m	3/s)			
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	1.4	1.1	0.8	2.2	5.0	8.8	10.1	6.0	4.2	3.2	2.5	1.8	3.9
Normal	2.7	2.0	1.6	2.3	6.3	13.9	19.4	11.9	8.4	6.1	4.7	3.6	6.9
Húmedo	5.7	4.5	3.4	3.8	13.6	38.3	37.6	26.8	19.0	13.4	10.2	7.7	15.3

7.7.9 Caracterización de la oferta hídrica Sub 9 - Unidad Hidrográfica 13691

La Figura 7-35 muestra los caudales medios multianuales generados a la salida de la subcuenca Unidad Hidrografica 13691 (Sub-9) que corresponden a un área de drenaje de 717.1 Km2. La Tabla 7-30 indican que el caudal promedio multianual de la subcuenca, en años húmedos crece a 57.1 m3/s y en años secos puede bajar a 23.8 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 106.1 m3/s (marzo) y en estiaje llega a valores mínimos de 10.2 m3/s (octubre).

Figura 7-35 Síntesis de caudales anuales generados en la Sub 9 - Unidad Hidrográfica 13691

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	717.1	
Caudal promedio anual	m³/s	40.3	
Caudal máximo	m³/s	216.4	(
Caudal mínimo	m³/s	3.5	
Caudal promedio anual en años secos	m³/s	23.8	
Caudal promedio anual en años húmedos	m³/s	57.1	Lane Lane
Caudal promedio anual al 50% persistencia	m³/s	40.2	Control of the contro
Caudal promedio anual al 75% persistencia	m³/s	30.1	
Caudal promedio anual al 90% persistencia	m³/s	28.4	March .
Caudal promedio anual en años "Niño"	m³/s	44.8	MANUAL TO THE PARTY OF THE PART
Caudal promedio anual en años "La Niña"	m³/s	46.9	
Volumen máximo disponible	MMC	1781.0	
Volumen mínimo disponible	MMC	746.1	

Tabla 7-30 Caudales promedios en año seco, normal y húmedo en la Sub 9- Unidad HIdrografica 13691

	Climat	ología	de cau	dales	en año	seco, n	ormal y	húme	do (m	3/s)			
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	8.1	6.3	6.5	23.9	34.0	48.2	59.9	42.1	21.6	14.9	11.6	8.3	23.8
Normal	12.2	10.2	11.6	22.3	42.6	93.4	106.1	75.0	44.9	26.0	20.5	15.1	40.0
Húmedo	16.6	13.8	11.5	23.9	72.0	154.8	147.9	97.8	62.1	36.7	27.5	20.6	57.1

7.7.10 Caracterización de la oferta hídrica Sub 10 - Subcuenca Oyolo

La Figura 7-36 muestra los caudales medios multianuales generados a la salida de la subcuenca Oyolo (Sub-10) que corresponden a un área de drenaje de 1057.8 Km2. La Tabla 7-31 indica que el caudal promedio multianual de la subcuenca, en años húmedos crece a 15.0 m3/s y en años secos puede bajar a 6.0 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 23.2 m3/s (marzo) y en estiaje llega a valores mínimos de 2.0 m3/s (noviembre).

Figura 7-36 Síntesis de caudales anuales generados en la Sub 10 - Subcuenca Oyolo

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	1057.8	
Caudal promedio anual	m³/s	10.1	V
Caudal máximo	m³/s	62.0	
Caudal mínimo	m³/s	0.6	The state of the s
Caudal promedio anual en años secos	m³/s	6.0	
Caudal promedio anual en años húmedos	m³/s	15.0	
Caudal promedio anual al 50% persistencia	m³/s	10.5	Caret.
Caudal promedio anual al 75% persistencia	m³/s	7.0	
Caudal promedio anual al 90% persistencia	m³/s	6.5	100 to 10
Caudal promedio anual en años "Niño"	m³/s	11.0	
Caudal promedio anual en años "La Niña"	m³/s	12.9	
/olumen máximo disponible	MMC	467.1	-
/olumen mínimo disponible	MMC	187.8	

Tabla 7-31 Caudales promedios en año seco, normal y húmedo en la Sub 10 - Subcuenca Oyolo

	Climatolo	gía de	cauda	les en	año se	co, no	rmal y	húme	do (m	3/s)			
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	2.5	1.8	1.4	3.7	7.4	11.5	16.0	11.1	6.4	4.3	3.4	2.4	6.0
Normal	3.2	2.4	2.0	3.6	8.8	20.6	23.2	17.7	10.2	6.4	5.1	3.7	8.9
Húmedo	5.1	3.8	2.7	4.1	15.9	39.5	40.5	26.8	17.3	10.4	7.8	5.8	15.0

7.7.11 Caracterización de la oferta hídrica Sub 11 - Subcuenca Parinacochas

La Figura 7-37 muestra los caudales medios multianuales generados a la salida de la subcuenca Parinacochas (Sub-11) que corresponden a un área de drenaje de 556.5 Km2. La Tabla 7-32 indica que el caudal promedio multianual de la subcuenca, en años húmedos crece a 3.2 m3/s y en años secos puede bajar a 0.6 m3/s.

Figura 7-37 Síntesis de caudales anuales generados en la Sub 11 - Subcuenca Parinacochas

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	556.5	
Caudal promedio anual	m³/s	1.8	
Caudal máximo	m³/s	10.5	Lord II
Caudal mínimo	m³/s	0.0	
Caudal promedio anual en años secos	m³/s	0.6	
Caudal promedio anual en años húmedos	m³/s	3.2	- Ta
Caudal promedio anual al 50% persistencia	m³/s	1.8	CONTRACTOR OF THE PARTY OF THE
Caudal promedio anual al 75% persistencia	m³/s	0.9	
Caudal promedio anual al 90% persistencia	m³/s	8.0	人工人。布尔特里 迪
Caudal promedio anual en años "Niño"	m³/s	2.1	
Caudal promedio anual en años "La Niña"	m³/s	2.3	
/olumen máximo disponible	MMC	101.2	
Volumen mínimo disponible	MMC	18.8	

Tabla 7-32 Caudales promedios en año seco, normal y húmedo en la Sub 11 - Subcuenca Parinacochas

	Climatolo	gía de	cauda	les en	año se	co, no	rmal y	húme	do (m	3/s)			
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	0.3	0.2	0.2	0.3	0.5	1.2	1.2	0.9	0.8	0.7	0.5	0.4	0.6
Normal	0.8	0.6	0.4	0.4	1.1	2.5	2.9	2.4	2.2	1.8	1.4	1.0	1.4
Húmedo	1.7	1.3	1.0	0.8	1.8	6.4	6.1	5.5	4.8	4.0	3.1	2.3	3.2

7.7.12 Caracterización de la oferta hídrica Sub 12 - Subcuenca Maran

La Figura 7-38 muestra los caudales medios multianuales generados a la salida de la subcuenca Maran (Sub-12) que corresponden a un área de drenaje de 942.5 Km2. La Tabla 7-33 indican que el caudal promedio multianual de la subcuenca, en años húmedos crece a 93.5 m3/s y en años secos puede bajar a 37.5 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 142.8 m3/s (marzo) y en estiaje llega a valores mínimos de 12.9 m3/s (noviembre)

Figura 7-38 Síntesis de caudales anuales generados en la Sub 12 - Subcuenca Maran

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	942.5	
Caudal promedio anual	m³/s	61.5	N m
Caudal máximo	m³/s	347.9	
Caudal mínimo	m³/s	4.2	
Caudal promedio anual en años secos	m³/s	37.5	
Caudal promedio anual en años húmedos	m³/s	93.5	
Caudal promedio anual al 50% persistencia	m³/s	62.5	THE STEEL ST
Caudal promedio anual al 75% persistencia	m³/s	43.0	
Caudal promedio anual al 90% persistencia	m³/s	40.5	7
Caudal promedio anual en años "Niño"	m³/s	68.3	To be a second
Caudal promedio anual en años "La Niña"	m³/s	75.1	The state of the s
Volumen máximo disponible	MMC	2917.4	
Volumen mínimo disponible	MMC	1177.0	

Tabla 7-33 Caudales promedios en año seco, normal y húmedo en la Sub 12 - Subcuenca Maran

Cl	Climatología de caudales en año seco, normal y húmedo (m3/s)												
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	12.5	9.5	9.0	29.4	55.1	75.5	103.0	64.7	35.8	24.0	18.6	13.2	37.5
Normal	17.0	13.4	12.9	28.8	64.3	133.2	142.8	98.1	58.4	36.4	28.1	20.4	54.5
Húmedo	28.0	22.9	18.0	33.4	114.9	254.7	247.9	157.2	101.8	62.1	46.8	34.8	93.5

7.7.13 Caracterización de la oferta hídrica Sub 13 - Intercuenca Cotahuasi

La Figura 7-39 muestra los caudales medios multianuales generados a la salida de la Intercuenca Cotahuasi (Sub-13) que corresponden a un área de drenaje de 1636.8 Km2. La Tabla 7-34 indican que el caudal promedio multianual de la Intercuenca Cotahuasi, en años húmedos crece a 59.4 m3/s y en años secos puede bajar a 23.1 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 100.5 m3/s (febrero) y en estiaje llega a valores mínimos de 8.9 m3/s (octubre).

Figura 7-39 Síntesis de caudales anuales generados en la Sub 13- Intercuenca Cotahuasi

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	1636.8	
Caudal promedio anual	m³/s	41.4	200
Caudal máximo	m³/s	233.2	
Caudal mínimo	m³/s	2.4	
Caudal promedio anual en años secos	m³/s	23.1	
Caudal promedio anual en años húmedos	m³/s	59.4	
Caudal promedio anual al 50% persistencia	m³/s	42.6	Hard Hard
Caudal promedio anual al 75% persistencia	m³/s	30.5	
Caudal promedio anual al 90% persistencia	m³/s	28.9	10 100 100 100
Caudal promedio anual en años "Niño"	m³/s	45.7	Samuel And
Caudal promedio anual en años "La Niña"	m³/s	50.5	- Aug 140 m
olumen máximo disponible	MMC	1849.7	
/olumen mínimo disponible	MMC	723.3	

Tabla 7-34 Caudales promedios en año seco, normal y húmedo en la Sub 13-Intercuenca Cotahuasi

Climatología de caudales en año seco, normal y húmedo (m3/s)													
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	8.4	6.0	5.6	31.8	46.4	55.7	51.3	32.3	14.4	10.3	9.3	5.7	23.1
Normal	11.3	8.9	10.0	29.6	63.4	100.5	87.4	55.2	28.7	19.0	15.7	10.7	36.7
Húmedo	18.8	14.6	11.7	31.9	101.6	179.4	143.4	84.8	51.4	31.8	25.1	18.3	59.4

7.7.14 Caracterización de la oferta hídrica Subcuenca Chichas

La Figura 7-40 muestra los caudales medios multianuales generados a la salida de la subcuenca Chichas (Sub-14) que corresponden a un área de drenaje de 1585.2 Km2. La Tabla7-35 indica que el caudal promedio multianual de la subcuenca, en años húmedos crece a 11.4 m3/s y en años secos puede bajar a 2.9 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 15.1 m3/s (marzo) y en estiaje llega a valores mínimos de 1.9 m3/s (noviembre).

Figura 7-40 Síntesis de caudales anuales generados en la Sub 14 - Subcuenca Chichas

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	1585.2	
Caudal promedio anual	m³/s	7.3	
Caudal máximo	m³/s	47.4	
Caudal mínimo	m³/s	0.0	And the second
Caudal promedio anual en años secos	m³/s	2.9	Total Control of the
Caudal promedio anual en años húmedos	m³/s	11.4	and the second s
Caudal promedio anual al 50% persistencia	m³/s	7.3	100 - 100 -
Caudal promedio anual al 75% persistencia	m³/s	4.2	the sail
Caudal promedio anual al 90% persistencia	m³/s	3.5	TE
Caudal promedio anual en años "Niño"	m³/s	7.9	
Caudal promedio anual en años "La Niña"	m³/s	11.0	
Volumen máximo disponible	MMC	353.9	
Volumen mínimo disponible	ММС	91.6	

Tabla 7-35 Caudales promedios en año seco, normal y húmedo en la Sub 14 - Subcuenca Chichas

Climatología de caudales en año seco, normal y húmedo (m3/s)													
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	0.9	0.7	0.6	3.6	4.9	7.9	6.7	4.1	2.3	1.5	1.1	0.8	2.9
Normal	2.6	2.2	1.9	3.2	9.0	19.2	15.1	12.1	7.6	5.6	4.3	3.3	7.2
Húmedo	4.2	3.3	2.4	4.7	11.1	32.3	26.1	19.0	12.9	8.7	6.7	5.1	11.4

7.7.15 Caracterización de la oferta hídrica Sub 15 - Subcuenca Churunga

La Figura 7-41 muestra los caudales medios multianuales generados a la salida de la subcuenca Churunga (Sub-15) que corresponden a un área de drenaje de 335.6 Km2. La Tabla 7-36 indican que el caudal promedio multianual de la subcuenca, en años húmedos crece a 0.7 m3/s y en años secos puede bajar a 0.1 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 1.0 m3/s (marzo) y en estiaje llega a valores mínimos de 0.017 m3/s (noviembre).

Figura 7-41 Síntesis de caudales anuales generados en la Sub 15 - Subcuenca Churunga

Caudales	Unidad	Valor	Unidad Hidrográfica
Area drenaje	Km²	335.6	
Caudal promedio anual	m³/s	0.3	10
Caudal máximo	m³/s	4.4	and the second
audal mínimo	m³/s	0.0	
audal promedio anual en años secos	m³/s	0.1	And the second
audal promedio anual en años húmedos	m³/s	0.7	
audal promedio anual al 50% persistencia	m³/s	0.2	Attended Common
audal promedio anual al 75% persistencia	m³/s	0.1	201 ABS
audal promedio anual al 90% persistencia	m³/s	0.1	AUGSA E
audal promedio anual en años "Niño"	m³/s	0.4	Par
audal promedio anual en años "La Niña"	m³/s	0.7	1 100
olumen máximo disponible	MMC	20.2	3
olumen mínimo disponible	MMC	2.6	

Tabla 7-36 Caudales promedios en año seco, normal y húmedo en la Sub 15 - Subcuenca Churunga

Climatología de caudales en año seco, normal y húmedo (m3/s)													
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	0.002	0.002	0.005	0.2	0.2	0.4	0.2	0.035	0.011	0.000	0.001	0.0	0.1
Normal	0.027	0.020	0.017	0.1	0.7	1.0	0.4	0.1	0.1	0.1	0.049	0.034	0.2
Húmedo	0.2	0.1	0.1	0.2	1.2	2.4	1.5	0.7	0.5	0.4	0.3	0.2	0.7

7.7.16 Caracterización de la oferta hídrica Sub 16 - Subcuenca Chalhuane

La Figura 7-42 muestra los caudales medios multianuales generados a la salida de la subcuenca Chalhuane (Sub-16) que corresponden a un área de drenaje de 339.0 Km2. La Tabla 7-37 indican que el caudal promedio multianual de la subcuenca, en años húmedos crece a 0.4 m3/s y en años secos puede bajar a 0.0 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 0.5 m3/s (febrero) y en estiaje llega a valores mínimos de 0.001 m3/s (octubre).

Figura 7-42 Síntesis de caudales anuales generados en la Sub 16 - Subcuenca Chalhuane

0.58
The state of the s
120
Light No.
My Ess
and the second

Tabla 7-37 Caudales promedios en año seco, normal y húmedo en la Sub 16 - Subcuenca Chalhuane

	Climatología de caudales en año seco, normal y húmedo (m3/s)													
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual	
Seco	0.000	0.002	0.003	0.090	0.127	0.144	0.073	0.013	0.000	0.000	0.000	0.002	0.038	
Normal	0.001	0.001	0.003	0.079	0.523	0.538	0.240	0.010	0.003	0.003	0.004	0.013	0.118	
Húmedo	0.039	0.032	0.108	0.096	1.127	1.766	0.783	0.164	0.123	0.099	0.085	0.055	0.373	

7.7.17 Caracterización de la oferta hídrica Subcuenca Esbilla

La Figura 7-43 muestra los caudales medios multianuales generados a la salida de la subcuenca Esbila (Sub-17) que corresponden a un área de drenaje de 254.5 Km2. La Tabla 7-38 indica que el caudal promedio multianual de la subcuenca, en años húmedos crece a 0.2 m3/s y en años secos puede bajar a 0.0 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 0.265 m3/s (enero) y en estiaje llega a valores mínimos de 0.001 m3/s (setiembre)

Figura 7-43 Síntesis de caudales anuales generados en la Sub 17 - Subcuenca Esbilla

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	254.5	
Caudal promedio anual	m³/s	0.1	
Caudal máximo	m³/s	2.0	and .
Caudal mínimo	m³/s	0.0	## < 10 ## = 10
Caudal promedio anual en años secos	m³/s	0.0	ESS A
Caudal promedio anual en años húmedos	m³/s	0.2	
Caudal promedio anual al 50% persistencia	m³/s	0.1	The state of the
Caudal promedio anual al 75% persistencia	m³/s	0.0	
Caudal promedio anual al 90% persistencia	m³/s	0.0	M March Told
Caudal promedio anual en años "Niño"	m³/s	0.1	William Salb-A-
Caudal promedio anual en años "La Niña"	m³/s	0.2	
Volumen máximo disponible	MMC	5.5	
Volumen mínimo disponible	MMC	0.7	

Tabla 7-38 Caudales promedios en año seco, normal y húmedo en la Sub 17 - Subcuenca Esbilla

	Climatología de caudales en año seco, normal y húmedo (m3/s)												
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	0.002	0.024	0.031	0.021	0.054	0.047	0.006	0.003	0.000	0.003	0.004	0.069	0.022
Normal	0.001	0.022	0.027	0.073	0.265	0.164	0.055	0.023	0.001	0.017	0.026	0.084	0.063
Húmedo	0.010	0.057	0.102	0.058	0.459	0.828	0.369	0.056	0.029	0.046	0.064	0.072	0.179

7.7.18 Caracterización de la oferta hídrica Sub 18 - Subcuenca Bajo Churunga

La Figura 7-44 muestra los caudales medios multianuales generados a la salida de la subcuenca Bajo Churunga (Sub-18) que corresponden a un área de drenaje de 116.5 Km2. La Tabla 7-39 indican que el caudal promedio multianual de la subcuenca, en años húmedos crece a 1.3 m3/s y en años secos puede bajar a 0.2 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 1.8 m3/s (febrero) y en estiaje llega a valores mínimos de 0.001 m3/s (setiembre).

Figura 7-44 Síntesis de caudales anuales generados en la Sub 18- Subcuenca Bajo Churunga

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	116.5	
Caudal promedio anual	m³/s	0.6	
Caudal máximo	m³/s	10.5	
Caudal mínimo	m³/s	0.0	5000
Caudal promedio anual en años secos	m³/s	0.2	Tank 1
Caudal promedio anual en años húmedos	m³/s	1.3	ettal jandy
Caudal promedio anual al 50% persistencia	m³/s	0.4	1987-1938 2887-1931
Caudal promedio anual al 75% persistencia	m³/s	0.2	Edit Stricks
Caudal promedio anual al 90% persistencia	m³/s	0.2	The Course
Caudal promedio anual en años "Niño"	m³/s	0.6	
Caudal promedio anual en años "La Niña"	m³/s	1.3	
Volumen máximo disponible	MMC	39.2	
Volumen mínimo disponible	MMC	4.7	

Tabla 7-39 Caudales promedios en año seco, normal y húmedo en la Sub 18 - Subcuenca Bajo Churunga

	Climatología de caudales en año seco, normal y húmedo (m3/s)												
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	0.000	0.035	0.049	0.323	0.333	0.575	0.335	0.074	0.004	0.004	0.003	0.071	0.151
Normal	0.001	0.021	0.043	0.246	1.631	1.795	0.847	0.053	0.012	0.021	0.030	0.103	0.400
Húmedo	0.187	0.187	0.335	0.372	3.096	5.346	2.785	0.874	0.669	0.565	0.461	0.328	1.267

7.7.19 Caracterización de la oferta hídrica Sub 19 - Intercuecna Medio Bajo Ocoña

La Figura 7-45 muestra los caudales medios multianuales generados a la salida de la Intercuenca Medio Bajo Ocoña (Sub-19) que corresponden a un área de drenaje de 1216.9 Km2. La Tabla 7-40 indican que el caudal promedio multianual de la subcuenca, en años húmedos crece a 163.9 m3/s y en años secos puede bajar a 60.2 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 280.0 m3/s (marzo) y en estiaje llega a valores mínimos de 26.9 m3/s (octubre).

Figura 7-45 Síntesis de caudales anuales generados en la Sub 19 - Intercuenca Medio Bajo Ocoña

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	1216.9	
Caudal promedio anual	m³/s	110.5	
Caudal máximo	m³/s	630.7	
Caudal mínimo	m³/s	7.0	
Caudal promedio anual en años secos	m³/s	60.2	
Caudal promedio anual en años húmedos	m³/s	163.9	
Caudal promedio anual al 50% persistencia	m³/s	112.0	
Caudal promedio anual al 75% persistencia	m³/s	76.6	
Caudal promedio anual al 90% persistencia	m³/s	73.4	
Caudal promedio anual en años "Niño"	m³/s	122.3	Di-Or Di-Or
Caudal promedio anual en años "La Niña"	m³/s	138.2	Strain Strain
Volumen máximo disponible	MMC	5104.9	a ===
Volumen mínimo disponible	MMC	1887.4	

Tabla 7-40 Caudales promedios en año seco, normal y húmedo en la Sub 19 - Intercuenca Medio Bajo Ocoña

Climatología de caudales en año seco, normal y húmedo (m3/s)													
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	20.1	14.2	14.5	66.6	107.9	134.1	150.3	93.8	46.6	32.2	25.7	17.0	60.2
Normal	32.8	26.9	29.6	59.7	134.7	277.5	280.0	188.9	109.8	66.6	54.1	38.6	108.3
Húmedo	49.7	39.6	31.6	70.4	226.0	480.1	409.8	257.8	163.9	102.5	77.8	57.4	163.9

7.7.20 Caracterización de la oferta hídrica Sub 20 - Subcuenca Bajo Ocoña

La Figura 7-46 muestra los caudales medios multianuales generados a la salida de la subcuenca Bajo Ocoña (Sub-20) que corresponden a un área de drenaje de 768.5 Km2. La Tabla 7-41 indican que el caudal promedio multianual de la subcuenca, en años húmedos crece a 163.2 m3/s y en años secos puede bajar a 59.4 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 262.5 m3/s (marzo) y en estiaje llega a valores mínimos de 24.0 m3/s (octubre).

Figura 7-46 Síntesis de caudales anuales generados en la subcuenca Bajo Ocoña

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	768.5	
Caudal promedio anual	m³/s	109.7	
Caudal máximo	m³/s	630.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Caudal mínimo	m³/s	6.6	
Caudal promedio anual en años secos	m³/s	59.4	
Caudal promedio anual en años húmedos	m³/s	163.2	and the same
Caudal promedio anual al 50% persistencia	m³/s	111.1	
Caudal promedio anual al 75% persistencia	m³/s	75.7	
Caudal promedio anual al 90% persistencia	m³/s	72.4	The same
Caudal promedio anual en años "Niño"	m³/s	121.5	
Caudal promedio anual en años "La Niña"	m³/s	137.4	
Volumen máximo disponible	MMC	5082.4	
Volumen mínimo disponible	MMC	1857.8	

Tabla 7-41 Caudales promedios en año seco, normal y húmedo en la subcuenca Bajo Ocoña

Climatología de caudales en año seco, normal y húmedo (m3/s)													
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	18.6	13.5	11.7	66.6	102.7	139.5	141.3	96.6	48.0	32.0	25.2	16.5	59.4
Normal	30.4	24.0	28.4	53.7	127.5	251.1	262.5	169.8	99.1	60.2	48.6	34.4	99.1
Húmedo	49.3	38.9	31.1	69.8	225.8	480.1	408.7	256.3	163.2	101.7	76.8	56.5	163.2

7.8 Caracterización de la oferta hídrica presente en la cuenca del Camana Majes a escala de subcuenca

La Figura 7-47 muestra el caudal promedio multianual representativo del periodo 1981-2016, para cada una de las 27 subcuencas comprendida en la cuenca del rio Camana Majes, evaluadas con fines del presente Estudio. En general, se aprecia que la Intercuenca Bajo Camana (Sub-1) es la que presenta mayor oferta hídrica con 593.3 m³/s y las subcuencas Molles, Puluvinas, Sub 5, Ayo y Sub 14 son las que presentan menor oferta hídrica en el orden de 0.02 a 0.4 m3/s (Sub 2, Sub 3, Sub 5, Sub 7 y Sub 14) y la que sigue es la subcuenca seis (sub 6) con 1.4 m³/s.

Figura 7-47 Caudal promedio anual en la línea base 1981-2016

A continuación se presenta los caudales mensuales y anuales característicos de un año seco, normal y húmedo representativos del periodo 1981-2016 para cada una de las subcuencas comprendida en la cuenca del rio Camana Majes.

7.8.1 Caracterización de la oferta hídrica Sub 1 - Intercuenca Bajo Camana

La Figura 7-48 muestra los caudales medios multianuales generados a la salida de la Intercuenca Bajo Camana (Sub-1) que corresponden a un área de drenaje de 593.3 Km2. La Tabla 7-42 indican que el caudal promedio multianual de la Intercuenca Bajo Camana, en años húmedos crece a 93.8 m3/s y en años secos puede bajar a 30.8 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 147.55 m3/s (febrero) y en estiaje llega a valores mínimos de 16.8 m3/s (octubre).

Figura 7-48 Síntesis de caudales anuales generados en la Sub 1- Intercuenca Bajo Camana

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	593.3	
Caudal promedio anual	m³/s	60.2	
Caudal máximo	m³/s	349.7	
Caudal mínimo	m³/s	0.0	The second second
Caudal promedio anual en años secos	m³/s	30.8	
Caudal promedio anual en años húmedos	m³/s	93.8	
Caudal promedio anual al 50% persistencia	m³/s	55.8	-
Caudal promedio anual al 75% persistencia	m³/s	43.7	- BET
Caudal promedio anual al 90% persistencia	m³/s	39.8	
Caudal promedio anual en años "Niño"	m³/s	67.5	
Caudal promedio anual en años "La Niña"	m³/s	69.2	
Volumen máximo disponible	MMC	2920.2	
Volumen mínimo disponible	MMC	966.8	

Tabla 7-42 Caudales promedios en año seco, normal y húmedo en la Sub 1 - Intercuenca Bajo Camana

	Climatología de caudales en año seco, normal y húmedo (m3/s)												
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	9.4	11.4	13.7	41.6	60.4	64.6	75.5	37.3	19.3	15.7	11.5	9.3	30.8
Normal	16.9	16.8	19.5	34.2	112.6	147.5	135.4	82.0	44.1	33.1	24.3	18.8	57.1
Húmedo	25.7	26.6	31.3	63.7	130.6	278.0	215.3	142.9	78.8	57.9	43.1	31.4	93.8

7.8.2 Caracterización de la oferta hídrica Sub 2 - Subcuenca Molles

La Figura 7-49 muestra los caudales medios multianuales generados a la salida de la Subcuenca Molles (Sub-2) que corresponden a un área de drenaje de 1465.0 Km2. La Tabla 7-43 indica que el caudal promedio multianual de la Subcuenca Molles, en años húmedos crece a 0.05 m3/s y en años secos puede bajar a 0.0 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 0.031 m3/s (febrero) y en estiaje llega a valores mínimos de 0.0 m3/s (mayo a noviembre).

Figura 7-49 Síntesis de caudales anuales generados en la Sub 2 - Subcuenca Molles

Unidad	Valor	Unidad Hidrográfica
Km²	1465.0	
m³/s	0.02	- 10
m³/s	1.01	The same of the sa
m³/s	0.0	
m³/s	0.0	manufacture books
m³/s	0.05	
m³/s	0.01	A STATE OF THE PARTY OF THE PAR
m³/s	0.0	1
m³/s	0.0	
m³/s	0.02	DEC-100.
m³/s	0.01	hings.
MMC	1.39	E 10A
MMC	0.00	
	Km ² m ³ /s	Km² 1465.0 m³/s 0.02 m³/s 1.01 m³/s 0.0 m³/s 0.05 m³/s 0.01 m³/s 0.0 m³/s 0.02 m³/s 0.01 MMC 1.39

Tabla 7-43 Caudales promedios en año seco, normal y húmedo en la Sub 2 - Subcuenca Molles

	Climatología de caudales en año seco, normal y húmedo (m3/s)												
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Normal	0.000	0.000	0.000	0.007	0.023	0.031	0.010	0.001	0.000	0.000	0.001	0.000	0.006
Húmedo	0.000	0.000	0.001	0.017	0.315	0.206	0.001	0.000	0.000	0.000	0.000	0.000	0.045

7.8.3 Caracterización de la oferta hídrica Sub 3 - Subcuenca Puluvinas

La Figura 7-50 muestra los caudales medios multianuales generados a la salida de la Subcuenca de Puluvinas (Sub-3) que corresponden a un área de drenaje de 840.0 Km2. La Tabla 7-44 indican que el caudal promedio multianual de la Subcuenca Puluvinas, en años húmedos se incrementa a 0.1 m3/s y en años secos puede bajar a 0.0 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 0.407 m3/s (enero) y en estiaje llega a valores mínimos de 0.021 m3/s (junio)

Figura 7-50 Síntesis de caudales anuales generados en la Sub 3 - Subcuenca Puluvinas

Caudales	Unidad	Valor	Unidad Hidrográfica
rea drenaje	Km²	840.0	
Caudal promedio anual	m³/s	0.1	D.
Caudal máximo	m³/s	2.1	A Change
Caudal mínimo	m³/s	0.0	and present
Caudal promedio anual en años secos	m³/s	0.0	13-03
Caudal promedio anual en años húmedos	m³/s	0.1	A Section 1
Caudal promedio anual al 50% persistencia	m³/s	0.0	
Caudal promedio anual al 75% persistencia	m³/s	0.0	F 50
Caudal promedio anual al 90% persistencia	m³/s	0.0	
Caudal promedio anual en años "Niño"	m³/s	0.1	
Caudal promedio anual en años "La Niña"	m³/s	0.1	
olumen máximo disponible	MMC	4.3	
olumen mínimo disponible	MMC	0.4	

Tabla 7-44 Caudales promedios en año seco, normal y húmedo en la Sub 3 - Subcuenca Puluvinas

	Climatología de caudales en año seco, normal y húmedo (m3/s)												
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	0.031	0.006	0.070	0.035	0.080	0.052	0.031	0.000	0.048	0.008	0.001	0.034	0.394
Normal	0.047	0.033	0.090	0.128	0.407	0.233	0.089	0.027	0.024	0.021	0.025	0.034	1.157
Húmedo	0.023	0.010	0.143	0.152	1.597	1.814	0.413	0.016	0.014	0.006	0.037	0.043	4.267

7.8.4 Caracterización de la oferta hídrica Subcuenca 4

La Figura 7-51 muestra los caudales medios multianuales generados a la salida de la Subcuenca cuatro (Sub-4) que corresponden a un área de drenaje de 4.6 Km2. La Tabla 7-45 indican que el caudal promedio multianual de la Subcuenca cuatro, en años húmedos crece a 2.8 m3/s y en años secos puede bajar a 1.0 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 3.3 m3/s (marzo) y en estiaje llega a valores mínimos de 0.5 m3/s (octubre y noviembre).

Figura 7-51 Síntesis de caudales anuales generados en la subcuenca 4

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	4.6	
Caudal promedio anual	m³/s	1.8	
Caudal máximo	m³/s	9.2	
Caudal mínimo	m³/s	0.1	
Caudal promedio anual en años secos	m³/s	1.0	Legion
Caudal promedio anual en años húmedos	m³/s	2.8	AMERICAN CONTROL OF CO
Caudal promedio anual al 50% persistencia	m³/s	1.6	Showard Showard
Caudal promedio anual al 75% persistencia	m³/s	1.4	- tour
Caudal promedio anual al 90% persistencia	m³/s	1.3	
Caudal promedio anual en años "Niño"	m³/s	2.0	
Caudal promedio anual en años "La Niña"	m³/s	1.8	
Volumen máximo disponible	MMC	86.9	
Volumen mínimo disponible	MMC	31.7	

Tabla 7-45 Caudales promedios en año seco, normal y húmedo en la Subcuenca 4

		Cli	matolo	gía de o	caudales	en año	seco, no	rmal y h	úmedo ((m3/s)			
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	0.4	0.3	0.3	0.5	1.6	2.0	2.0	1.5	1.2	1.0	0.7	0.5	1.0
Normal	0.6	0.5	0.5	0.7	2.5	3.1	3.3	2.6	2.0	1.5	1.1	8.0	1.6
Húmedo	1.0	0.8	0.9	1.3	3.2	5.7	5.8	5.0	3.7	2.6	1.9	1.4	2.8

7.8.5 Caracterización de la oferta hídrica Subcuenca 5

La Figura 7-52 muestra los caudales medios multianuales generados a la salida de la Subcuenca 5 (Sub-5) que corresponden a un área de drenaje de60.5 Km2. La Tabla 7-46 indican que el caudal promedio multianual de la Subcuenca 5, en años húmedos crece a 0.6 m3/s y en años secos puede bajar a 0.2 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 0.7 m3/s (marzo) y en estiaje llega a valores mínimos de 0.1m3/s (setiembre a noviembre).

Figura 7-52 Síntesis de caudales anuales generados en la subcuenca 5

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	60.5	
Caudal promedio anual	m³/s	0.4	
Caudal máximo	m³/s	1.9	-349 10
Caudal mínimo	m³/s	0.0	
Caudal promedio anual en años secos	m³/s	0.2	
Caudal promedio anual en años húmedos	m³/s	0.6	the same of the sa
Caudal promedio anual al 50% persistencia	m³/s	0.3	
Caudal promedio anual al 75% persistencia	m³/s	0.3	
Caudal promedio anual al 90% persistencia	m³/s	0.3	
Caudal promedio anual en años "Niño"	m³/s	0.4	
Caudal promedio anual en años "La Niña"	m³/s	0.4	
Volumen máximo disponible	MMC	17.7	
Volumen mínimo disponible	MMC	6.3	

Tabla 7-46 Caudales promedios en año seco, normal y húmedo en la Subcuenca 5

		Cli	matolo	gía de o	caudales	en año	seco, no	rmal y h	úmedo ((m3/s)			
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	0.1	0.1	0.1	0.2	0.3	0.4	0.4	0.3	0.2	0.2	0.1	0.1	0.2
Normal	0.1	0.1	0.1	0.2	0.6	0.6	0.7	0.5	0.4	0.3	0.2	0.2	0.3
Húmedo	0.2	0.2	0.2	0.3	0.7	1.2	1.2	1.0	0.7	0.5	0.4	0.3	0.6

7.8.6 Caracterización de la oferta hídrica Subcuenca 6

La Figura 7-53 muestra los caudales medios multianuales generados a la salida de la Subcuenca 6 (Sub-6) que corresponden a un área de drenaje de 217.8 Km2. La Tabla 7-47 indican que el caudal promedio multianual de la Subcuenca 6, en años húmedos crece a 2.2 m3/s y en años secos puede bajar a 0.8 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 7.0 m3/s (febrero) y en estiaje llega a valores mínimos de 0.9 m3/s (noviembre).

Figura 7-53 Síntesis de caudales anuales generados en la subcuenca 6

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	217.8	220
Caudal promedio anual	m³/s	1.4	
Caudal máximo	m³/s	7.2	
Caudal mínimo	m³/s	0.1	***
Caudal promedio anual en años secos	m³/s	0.8	
Caudal promedio anual en años húmedos	m³/s	2.2	
Caudal promedio anual al 50% persistencia	m³/s	1.2	
Caudal promedio anual al 75% persistencia	m³/s	1.1	
Caudal promedio anual al 90% persistencia	m³/s	1.0	
Caudal promedio anual en años "Niño"	m³/s	1.6	馬
Caudal promedio anual en años "La Niña"	m³/s	1.4	
Volumen máximo disponible	MMC	68.1	
Volumen mínimo disponible	MMC	24.8	

Tabla 7-47 Caudales promedios en año seco, normal y húmedo en la Subcuenca 6

		Cli	matolo	gía de o	caudales	en año	seco, no	rmal y h	úmedo ((m3/s)			
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	0.8	0.7	0.6	1.0	3.2	3.8	4.1	3.2	2.6	2.1	1.6	1.2	24.8
Normal	1.3	1.0	0.9	1.5	5.1	5.8	7.0	5.3	4.1	3.1	2.4	1.8	39.2
Húmedo	2.1	1.7	1.8	2.6	6.6	10.7	12.2	10.3	7.8	5.4	4.1	2.9	68.1

7.8.7 Caracterización de la oferta hídrica Sub 7 - Subcuenca Ayo

La Figura 7-54 muestra los caudales medios multianuales generados a la salida de la subcuenca Ayo (Sub-7) que corresponden a un área de drenaje de 157.7 Km2. La Tabla 7-48 indican que el caudal promedio multianual de la Subcuenca Ayo, en años húmedos crece a 0.4 m3/s y en años secos puede bajar a 0.1 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 1.069 m3/s (febrero) y en estiaje llega a valores mínimos de 0.001 m3/s (agosto).

Figura 7-54 Síntesis de caudales anuales generados en la Sub 7 - subcuenca Ayo

Caudales	Unidad	Valor
Área drenaje	Km²	157.7
Caudal promedio anual	m³/s	0.2
Caudal máximo	m³/s	4.0
Caudal mínimo	m³/s	0.0
Caudal promedio anual en años secos	m³/s	0.1
Caudal promedio anual en años húmedos	m³/s	0.4
Caudal promedio anual al 50% persistencia	m³/s	0.2
Caudal promedio anual al 75% persistencia	m³/s	0.2
Caudal promedio anual al 90% persistencia	m³/s	0.2
Caudal promedio anual en años "Niño"	m³/s	0.3
Caudal promedio anual en años "La Niña"	m³/s	0.4
Volumen máximo disponible	MMC	12.7
Volumen mínimo disponible	MMC	3.8

Tabla 7-48 Caudales promedios en año seco, normal y húmedo en la Sub 7 - Subcuenca Ayo

		Clir	natolog	gía de ca	udales	en año s	eco, noi	rmal y h	úmedo	(m3/s)			
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	0.013	0.032	0.032	0.219	0.307	0.414	0.290	0.125	0.012	0.014	0.000	0.005	0.122
Normal	0.003	0.014	0.036	0.142	0.792	1.069	0.378	0.156	0.007	0.009	0.003	0.001	0.218
Húmedo	0.040	0.060	0.038	0.240	1.153	2.137	0.832	0.256	0.080	0.052	0.049	0.041	0.415

7.8.8 Caracterización de la oferta hídrica Subcuenca 8

La Figura 7-55 muestra los caudales medios multianuales generados a la salida de la Subcuenca ocho (Sub-8) que corresponden a un área de drenaje de 468.5 Km2. La Tabla 7-49 indican que el caudal promedio multianual de la Subcuenca 8, en años húmedos crece a 5.9 m3/s y en años secos puede bajar a 1.8 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 6.2 m3/s (marzo) y en estiaje llega a valores mínimos de 0.8 m3/s (noviembre).

Figura 7-55 Síntesis de caudales anuales generados en la subcuenca 8

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	468.5	
Caudal promedio anual	m³/s	3.7	
Caudal máximo	m³/s	25.6	come
Caudal mínimo	m³/s	0.1	The second
Caudal promedio anual en años secos	m³/s	1.8	
Caudal promedio anual en años húmedos	m³/s	5.9	
Caudal promedio anual al 50% persistencia	m³/s	3.0	
Caudal promedio anual al 75% persistencia	m³/s	2.4	
Caudal promedio anual al 90% persistencia	m³/s	2.3	The second second
Caudal promedio anual en años "Niño"	m³/s	4.2	
Caudal promedio anual en años "La Niña"	m³/s	3.1	
Volumen máximo disponible	MMC	185.2	
Volumen mínimo disponible	MMC	58.0	

Tabla 7-49 Caudales promedios en año seco, normal y húmedo en la Subcuenca 8

		Cli	matolo	gía de o	audales	en año	seco, no	rmal y h	úmedo ((m3/s)			
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	0.7	0.6	0.6	1.0	2.9	3.6	3.7	2.9	2.2	1.8	1.3	1.0	1.8
Normal	1.2	1.0	0.8	1.6	3.8	6.0	6.2	4.9	3.8	3.0	2.2	1.7	3.0
Húmedo	1.9	1.5	1.9	2.9	7.8	12.2	12.7	10.9	7.5	5.3	3.7	2.6	5.9

7.8.9 Caracterización de la oferta hídrica Subcuenca 9

La Figura 7-56 muestra los caudales medios multianuales generados a la salida de la Subcuenca nueve (Sub-9) que corresponden a un área de drenaje de 1052.2 Km2. La Tabla 7-50 indican que el caudal promedio multianual de la Subcuenca 9, en años húmedos crece a 95.1 m3/s y en años secos puede bajar a 32.4 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 137.7 m3/s (febrero) y en estiaje llega a valores mínimos de 18.1 m3/s (octubre).

Figura 7-56 Síntesis de caudales anuales generados en la subcuenca 9

Caudales	Unidad	Valor	Unidad Hidrográfica
area drenaje	Km²	1052.2	TES
audal promedio anual	m³/s	61.7	James Alexand
audal máximo	m³/s	348.6	
audal mínimo	m³/s	0.0	100
audal promedio anual en años secos	m³/s	32.4	
audal promedio anual en años húmedos	m³/s	95.1	1
udal promedio anual al 50% persistencia	m³/s	57.4	
udal promedio anual al 75% persistencia	m³/s	45.3	
udal promedio anual al 90% persistencia	m³/s	41.5	
udal promedio anual en años "Niño"	m³/s	69.0	
udal promedio anual en años "La Niña"	m³/s	70.6	
lumen máximo disponible	MMC	2962.4	10-4
olumen mínimo disponible	MMC	1017.2	

Tabla 7-50 Caudales promedios en año seco, normal y húmedo en la Subcuenca 9

		Cli	matolo	gía de (caudales	en año	seco, no	rmal y h	úmedo ((m3/s)			
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	11.1	12.8	14.7	42.5	61.4	65.8	77.1	39.3	21.5	17.9	13.6	11.2	32.4
Normal	18.6	18.1	21.4	41.1	89.3	137.7	125.9	77.1	44.5	34.5	25.5	20.2	54.5
Húmedo	27.5	28.1	32.5	64.5	130.2	277.2	216.6	144.9	81.0	60.1	45.2	33.5	95.1

7.8.10 Caracterización de la oferta hídrica Sub 10 – Subcuenca Capiza

La Figura 7-57 muestra los caudales medios multianuales generados a la salida de la Subcuenca Capiza (Sub-10) que corresponden a un área de drenaje de 837.3 Km2. La Tabla 7-51 indican que el caudal promedio multianual de la Subcuenca Capiza, en años húmedos crece a 2.6 m3/s y en años secos puede bajar a 0.7 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 5.6 m3/s (febrero) y en estiaje llega a valores mínimos de 0.1 m3/s (julio, agosto y octubre)

Figura 7-57 Síntesis de caudales anuales generados en la Sub 10 - Subcuenca Capiza

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	837.3	
Caudal promedio anual	m³/s	1.5	
Caudal máximo	m³/s	19.2	
Caudal mínimo	m³/s	0.0	Legenda State of the Legenda S
Caudal promedio anual en años secos	m³/s	0.7	
Caudal promedio anual en años húmedos	m³/s	2.6	
Caudal promedio anual al 50% persistencia	m³/s	1.3	
Caudal promedio anual al 75% persistencia	m³/s	0.9	
Caudal promedio anual al 90% persistencia	m³/s	0.8	
Caudal promedio anual en años "Niño"	m³/s	1.7	
Caudal promedio anual en años "La Niña"	m³/s	2.5	
Volumen máximo disponible	MMC	79.3	
Volumen mínimo disponible	MMC	21.2	

Tabla 7-51 Caudales promedios en año seco, normal y húmedo en la Sub 10 - Subcuenca Capiza

		Cli	matolo	gía de o	caudales	en año	seco, no	rmal y h	úmedo ((m3/s)			
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	0.4	0.2	0.1	1.0	1.8	2.2	0.9	0.8	0.7	0.1	0.0	0.0	0.7
Normal	0.6	0.1	0.2	0.6	3.0	5.6	2.9	1.4	0.8	0.2	0.1	0.1	1.3
Húmedo	1.2	0.5	0.3	1.4	3.8	11.6	5.5	2.6	1.9	0.9	0.7	0.5	2.6

7.8.11 Caracterización de la oferta hídrica Sub 11 - Intercuenca Colca Camana

La Figura 7-58 muestra los caudales medios multianuales generados a la salida de la Intercuenca Colca Camana (Sub-11) que corresponden a un área de drenaje de 1568.0 Km2. La Tabla 7-52 indican que el caudal promedio multianual de la Intercuenca Colca Camana, en años húmedos crece a 92.6 m3/s y en años secos puede bajar a 32.1 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 141.6 m3/s (febrero) y en estiaje llega a valores mínimos de 19.2 m3/s (octubre).

Figura 7-58 Síntesis de caudales anuales generados en la Sub 11 - Intercuenca Colca Camana

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	1568.0	
Caudal promedio anual	m³/s	60.4	Manager Manage
Caudal máximo	m³/s	339.9	100 100 100 100
Caudal mínimo	m³/s	0.0	
Caudal promedio anual en años secos	m³/s	32.1	Entransister anno
Caudal promedio anual en años húmedos	m³/s	92.6	
Caudal promedio anual al 50% persistencia	m³/s	56.8	The special section of the section o
Caudal promedio anual al 75% persistencia	m³/s	44.5	
Caudal promedio anual al 90% persistencia	m³/s	41.2	
Caudal promedio anual en años "Niño"	m³/s	67.5	
Caudal promedio anual en años "La Niña"	m³/s	68.0	
/olumen máximo disponible	MMC	2887.5	
Volumen mínimo disponible	MMC	1009.2	

Tabla 7-52 Caudales promedios en año seco, normal y húmedo en la Sub 11 - Intercuenca Colca Camana

		Cli	matolo	gía de (caudales	en año	seco, no	rmal y h	úmedo ((m3/s)			
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	11.2	13.2	14.9	41.6	60.1	63.6	75.8	39.0	21.4	18.6	14.3	11.9	32.1
Normal	19.4	19.2	22.0	37.4	94.5	141.6	136.7	84.1	47.1	37.1	28.7	22.2	57.5
Húmedo	26.1	27.3	31.0	59.5	142.5	262.6	207.9	141.8	78.7	58.3	43.3	32.7	92.6

7.8.12 Caracterización de la oferta hídrica Subcuenca 12

La Figura 7-59 muestra los caudales medios multianuales generados a la salida de la Subucenca doce (Sub-12) que corresponden a un área de drenaje de 171.1 Km2. La Tabla 7-53 indica que el caudal promedio multianual de la Subcuenca 12, en años húmedos crece a 13.8 m3/s y en años secos puede bajar a 4.7 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 16.9 m3/s (marzo) y en estiaje llega a valores mínimos de 2.1 m3/s (noviembre).

Figura 7-59 Síntesis de caudales anuales generados en la subcuenca 12

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	171.1	
Caudal promedio anual	m³/s	8.6	
Caudal máximo	m³/s	49.9	
Caudal mínimo	m³/s	0.3	
Caudal promedio anual en años secos	m³/s	4.7	Service Communication of the C
Caudal promedio anual en años húmedos	m³/s	13.8	Mills Con Con Statement St
Caudal promedio anual al 50% persistencia	m³/s	7.7	The Salary
Caudal promedio anual al 75% persistencia	m³/s	6.1	
Caudal promedio anual al 90% persistencia	m³/s	6.0	
Caudal promedio anual en años "Niño"	m³/s	9.6	
Caudal promedio anual en años "La Niña"	m³/s	8.1	
Volumen máximo disponible	MMC	431.6	
Volumen mínimo disponible	MMC	149.0	

Tabla 7-53 Caudales promedios en año seco, normal y húmedo en la Subcuenca 12

		Cli	matolo	gía de (caudales	en año	seco, no	rmal y h	úmedo ((m3/s)			
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	1.7	1.4	1.5	3.2	7.7	8.6	9.7	7.5	5.5	4.4	3.2	2.4	4.7
Normal	3.0	2.3	2.1	3.7	10.2	13.9	16.9	14.4	9.4	7.3	5.5	4.1	7.7
Húmedo	4.4	3.6	4.6	7.4	17.8	28.4	29.3	25.3	17.6	12.3	8.6	6.1	13.8

7.8.13 Caracterización de la oferta hídrica Llapa

La Figura 7-60 muestra los caudales medios multianuales generados a la salida de la Subcuenca Llapa (Sub-13) que corresponden a un área de drenaje de 549.7 Km2. La Tabla 7-54 indica que el caudal promedio multianual de la Subcuenca Llapa, en años húmedos crece a 5.0 m3/s y en años secos puede bajar a 1.8 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 18.2 m3/s (marzo) y en estiaje llega a valores mínimos de 2.2 m3/s (octubre).

Figura 7-60 Síntesis de caudales anuales generados en la Sub 13 - Subcuenca Llapa

Caudales	Unidad	Valor	Unidad Hidrográfica
rea drenaje	Km²	549.7	
Caudal promedio anual	m³/s	3.3	
Caudal máximo	m³/s	17.4	Lapate
Caudal mínimo	m³/s	0.0	
Caudal promedio anual en años secos	m³/s	1.8	A HE
Caudal promedio anual en años húmedos	m³/s	5.0	TO SERVICE TO
Caudal promedio anual al 50% persistencia	m³/s	3.0	
Caudal promedio anual al 75% persistencia	m³/s	2.6	
Caudal promedio anual al 90% persistencia	m³/s	2.5	
Caudal promedio anual en años "Niño"	m³/s	3.8	
Caudal promedio anual en años "La Niña"	m³/s	3.1	¥.
Volumen máximo disponible	MMC	155.9	
Volumen mínimo disponible	MMC	57.1	

Tabla 7-54 Caudales promedios en año seco, normal y húmedo en la Sub13- Subcuenca Llapa

		Cli	matolo	gía de (caudales	en año	seco, no	rmal y h	úmedo ((m3/s)			
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	1.5	1.3	1.5	4.1	8.6	10.3	9.8	6.4	4.8	3.8	2.9	2.1	57.1
Normal	2.6	2.2	2.3	4.7	16.5	15.2	18.2	10.8	8.1	6.1	4.8	3.5	95.1
Húmedo	4.1	3.6	4.0	7.3	20.2	29.2	27.4	20.5	14.9	10.7	8.0	5.8	155.9

7.8.14 Caracterización de la oferta hídrica Subcuenca 14

La Figura 7-61 muestra los caudales medios multianuales generados a la salida de la Subcuenca catorce (Sub-14) que corresponden a un área de drenaje de 45.4 Km2. La Tabla 7-55 indican que el caudal promedio multianual de la Subcuenca 14, en años húmedos crece a 0.5 m3/s y en años secos puede bajar a 0.2 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 0.8 m3/s (febrero) y en estiaje llega a valores mínimos de 0.1 m3/s (agosto a noviembre).

Figura 7-61 Síntesis de caudales anuales generados en la subcuenca 14

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	45.4	
Caudal promedio anual	m³/s	0.4	
Caudal máximo	m³/s	1.8	
Caudal mínimo	m³/s	0.0	
Caudal promedio anual en años secos	m³/s	0.2	
Caudal promedio anual en años húmedos	m³/s	0.5	
Caudal promedio anual al 50% persistencia	m³/s	0.3	ament and
Caudal promedio anual al 75% persistencia	m³/s	0.3	Education Company
Caudal promedio anual al 90% persistencia	m³/s	0.3	to the state of th
Caudal promedio anual en años "Niño"	m³/s	0.4	
Caudal promedio anual en años "La Niña"	m³/s	0.4	
Volumen máximo disponible	MMC	16.5	
Volumen mínimo disponible	MMC	6.9	

Tabla 7-55 Caudales promedios en año seco, normal y húmedo en la Subcuenca 14

		Cli	matolo	gía de o	caudales	en año	seco, no	rmal y h	úmedo (m3/s)			
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	0.1	0.1	0.1	0.1	0.4	0.5	0.5	0.3	0.2	0.2	0.1	0.1	0.2
Normal	0.1	0.1	0.1	0.2	0.6	8.0	0.6	0.5	0.3	0.3	0.2	0.1	0.3
Húmedo	0.2	0.1	0.2	0.3	0.7	1.3	1.1	0.9	0.6	0.4	0.3	0.2	0.5

7.8.15 Caracterización de la oferta hídrica Sub 15 - Subcuenca Medio Colca

La Figura 7-62 muestra los caudales medios multianuales generados a la salida de la Subcuenca Medio Colca (Sub-15) que corresponden a un área de drenaje de 1620.8 Km2. La Tabla 7-56 indican que el caudal promedio multianual de la Subcuenca Medio Colca, en años húmedos crece a 53.1 m3/s y en años secos puede bajar a 19.8 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 82.2 m3/s (febrero) y en estiaje llega a valores mínimos de 13.7 m3/s (setiembre).

Figura 7-62 Síntesis de caudales anuales generados en la Sub 15 - Subcuenca Medio Colca

Caudales	Unidad	Valor
Área drenaje	Km²	1620.8
Caudal promedio anual	m³/s	35.1
Caudal máximo	m³/s	209.0
Caudal mínimo	m³/s	0.5
Caudal promedio anual en años secos	m³/s	19.8
Caudal promedio anual en años húmedos	m³/s	53.1
Caudal promedio anual al 50% persistencia	m³/s	34.2
Caudal promedio anual al 75% persistencia	m³/s	26.9
Caudal promedio anual al 90% persistencia	m³/s	25.5
Caudal promedio anual en años "Niño"	m³/s	38.9
Caudal promedio anual en años "La Niña"	m³/s	37.1
Volumen máximo disponible	MMC	1657.2
Volumen mínimo disponible	MMC	621.7

Tabla 7-56 Caudales promedios en año seco, normal y húmedo en la Sub15 - Subcuenca Medio Colca

		Cli	matolo	gía de c	audales	en año	seco, no	rmal y h	úmedo ((m3/s)			
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	9.7	11.0	12.1	20.4	30.7	34.8	41.5	25.9	15.6	14.1	11.6	10.1	19.8
Normal	13.7	13.9	16.1	23.1	47.4	64.4	82.2	50.7	28.5	23.3	18.3	14.8	33.0
Húmedo	17.9	18.6	22.6	33.3	65.0	135.3	123.0	91.7	46.3	35.1	26.9	21.5	53.1

7.8.16 Caracterización de la oferta hídrica Subcuenca 16

La Figura 7-63 muestra los caudales medios multianuales generados a la salida de la Subcuenca dieciseis (Sub-16) que corresponden a un área de drenaje de 154.0 Km2. La Tabla 7-57 indica que el caudal promedio multianual de la subcuenca 16, en años húmedos crece a 19.1 m3/s y en años secos puede bajar a 7.0 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 24.5 m3/s (marzo) y en estiaje llega a valores mínimos de 3.0 m3/s (noviembre).

Figura 7-63 Síntesis de caudales anuales generados en la subcuenca 16

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	154.0	4
Caudal promedio anual	m³/s	12.3	
Caudal máximo	m³/s	67.1	The state of the s
Caudal mínimo	m³/s	0.4	
Caudal promedio anual en años secos	m³/s	7.0	
Caudal promedio anual en años húmedos	m³/s	19.1	
Caudal promedio anual al 50% persistencia	m³/s	11.2	
Caudal promedio anual al 75% persistencia	m³/s	9.0	
Caudal promedio anual al 90% persistencia	m³/s	8.8	A STATE OF THE PARTY OF THE PAR
Caudal promedio anual en años "Niño"	m³/s	13.6	
Caudal promedio anual en años "La Niña"	m³/s	11.8	V () () () ()
/olumen máximo disponible	MMC	597.0	
/olumen mínimo disponible	MMC	218.9	

Tabla 7-57 Caudales promedios en año seco, normal y húmedo en la Subcuenca 16

	Climatología de caudales en año seco, normal y húmedo (m3/s)												
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	2.5	2.1	2.3	5.1	11.6	12.9	14.6	10.8	7.7	6.1	4.5	3.4	7.0
Normal	4.0	3.2	3.0	5.5	17.2	22.0	24.5	19.3	12.5	9.7	7.3	5.3	11.1
Húmedo	6.3	5.3	7.1	11.2	23.6	38.1	40.5	35.2	24.1	16.9	11.9	8.5	19.1

7.8.17 Caracterización de la oferta hídrica Sub-17 Subcuenca Negrillo

La Figura 7-64 muestra los caudales medios multianuales generados a la salida de la subcuenca 17 (Sub-17) que corresponden a un área de drenaje de 449.09 Km2. La Tabla 7-58 indican que el caudal promedio multianual de la Subcuenca Negrillo, en años húmedos crece a 5.6 m3/s y en años secos puede bajar a 2.2 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 7.5 m3/s (marzo) y en estiaje llega a valores mínimos de 1.0 m3/s (octubre y noviembre).

Figura 7-64 Síntesis de caudales anuales generados en la Sub 17 - Subcuenca Negrillo

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	449.9	
Caudal promedio anual	m³/s	3.7	
Caudal máximo	m³/s	17.7	722
Caudal mínimo	m³/s	0.1	
Caudal promedio anual en años secos	m³/s	2.2	
Caudal promedio anual en años húmedos	m³/s	5.6	The same of the sa
Caudal promedio anual al 50% persistencia	m³/s	3.4	10000
Caudal promedio anual al 75% persistencia	m³/s	2.8	
Caudal promedio anual al 90% persistencia	m³/s	2.7	
Caudal promedio anual en años "Niño"	m³/s	4.0	10
Caudal promedio anual en años "La Niña"	m³/s	3.8	
Volumen máximo disponible	MMC	175.7	
Volumen mínimo disponible	MMC	68.0	

Tabla 7-58 Caudales promedios en año seco, normal y húmedo en la Subc 17 - Subcuenca Negrillo

Climatología de caudales en año seco, normal y húmedo (m3/s)													
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	0.9	0.7	0.7	1.5	3.2	3.6	4.5	3.6	2.6	2.1	1.6	1.2	2.2
Normal	1.2	1.0	1.0	1.8	5.0	6.1	7.5	6.6	4.0	3.0	2.3	1.7	3.4
Húmedo	1.9	1.6	1.8	3.0	6.2	10.3	12.1	11.3	7.4	5.2	3.7	2.7	5.6

7.8.18 Caracterización de la oferta hídrica Subcuenca 18

La Figura 7-65 muestra los caudales medios multianuales generados a la salida de la Subcuenca dieciocho (Sub-18) que corresponden a un área de drenaje de 367.2 Km2. La Tabla 7-59 indica que el caudal promedio multianual de la Subcuenca 18, en años húmedos crece a 20.4 m3/s y en años secos puede bajar a 7.5 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 31.6 m3/s (marzo) y en estiaje llega a valores mínimos de 5.2 m3/s (enero).

Figura 7-65 Síntesis de caudales anuales generados en la subcuenca 18

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	367.2	
Caudal promedio anual	m³/s	13.2	
Caudal máximo	m³/s	108.1	
Caudal mínimo	m³/s	0.5	I I I I I I I I I I I I I I I I I I I
Caudal promedio anual en años secos	m³/s	7.5	Marinet 100 August 100
Caudal promedio anual en años húmedos	m³/s	20.4	EU 200
Caudal promedio anual al 50% persistencia	m³/s	12.3	Subserva 4
Caudal promedio anual al 75% persistencia	m³/s	9.9	W
Caudal promedio anual al 90% persistencia	m³/s	9.6	× 2000
Caudal promedio anual en años "Niño"	m³/s	14.2	
Caudal promedio anual en años "La Niña"	m³/s	13.4	
Volumen máximo disponible	MMC	634.7	
Volumen mínimo disponible	MMC	237.2	

Tabla 7-59 Caudales promedios en año seco, normal y húmedo en la Subcuenca 18

Climatología de caudales en año seco, normal y húmedo (m3/s)													
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	7.0	8.3	8.8	8.1	4.8	5.3	14.3	8.8	5.6	6.5	6.3	6.3	7.5
Normal	7.9	9.4	9.9	8.9	5.2	18.3	31.6	20.9	9.2	8.9	7.9	7.5	12.1
Húmedo	9.1	9.9	12.5	14.0	14.2	53.8	46.0	39.3	14.1	12.0	10.2	9.4	20.4

7.8.19 Caracterización de la oferta hídrica Sub 19- Intercuenca Medio Alto Colca

La Figura 7-66 muestra los caudales medios multianuales generados a la salida de la Intercuenca Medio Alto Colca (Sub-19) que corresponden a un área de drenaje de 400.5 Km2. La Tabla 7-60 indica que el caudal promedio multianual de la Subcuenca 19, en años húmedos crece a 36.5 m3/s y en años secos puede bajar a 14.2 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 55.5 m3/s (marzo) y en estiaje llega a valores mínimos de 11.1 m3/s (setiembre).

Figura 7-66 Síntesis de caudales anuales generados en la Sub 19- Intercuenca Medio Alto Colca

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	400.5	
Caudal promedio anual	m³/s	24.3	
Caudal máximo	m³/s	151.8	1000
Caudal mínimo	m³/s	1.0	Company of
Caudal promedio anual en años secos	m³/s	14.2	(m) 100
audal promedio anual en años húmedos	m³/s	36.5	Self-Self-Self-Self-Self-Self-Self-Self-
audal promedio anual al 50% persistencia	m³/s	23.5	
audal promedio anual al 75% persistencia	m³/s	18.5	· Marie
Caudal promedio anual al 90% persistencia	m³/s	17.7	40 74 340
audal promedio anual en años "Niño"	m³/s	26.5	
audal promedio anual en años "La Niña"	m³/s	25.1	
olumen máximo disponible	MMC	1140.2	
/olumen mínimo disponible	MMC	447.6	

Tabla 7-60 Caudales promedios en año seco, normal y húmedo en la Sub 19 - Intercuenca Medio Alto Colca

Climatología de caudales en año seco, normal y húmedo (m3/s)													
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	9.0	10.1	10.9	13.8	17.7	20.3	27.8	19.0	12.0	11.5	9.9	9.0	14.2
Normal	11.1	11.8	13.4	16.4	25.2	38.8	55.5	36.8	20.1	16.9	13.6	11.5	22.6
Húmedo	14.1	15.0	18.4	23.7	36.1	89.4	84.1	67.1	30.9	24.2	19.2	16.2	36.5

7.8.20 Caracterización de la oferta hídrica Sub 20 - Subcuenca El Pañe Negrillo

La Figura 7-67 muestra los caudales medios multianuales generados a la salida de la Subcuenca El Pañe Negrillo (Sub-20) que corresponden a un área de drenaje de 196.2 Km2. La Tabla 7-61 indican que el caudal promedio multianual de la Subcuenca 20, en años húmedos crece a 3.0 m3/s y en años secos puede bajar a 1.4 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 4.4 m3/s (marzo) y en estiaje llega a valores mínimos de 0.6 m3/s (setiembre).

Figura 7-67 Síntesis de caudales anuales generados en la Sub 20- Subcuenca El Pañe Negrillo

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	196.2	
Caudal promedio anual	m³/s	2.2	
Caudal máximo	m³/s	9.7	11ge/94
Caudal mínimo	m³/s	0.1	40-4x
Caudal promedio anual en años secos	m³/s	1.4	1 Fire back
Caudal promedio anual en años húmedos	m³/s	3.0	7 Tan
Caudal promedio anual al 50% persistencia	m³/s	2.1	
Caudal promedio anual al 75% persistencia	m³/s	1.8	
Caudal promedio anual al 90% persistencia	m³/s	1.7	
Caudal promedio anual en años "Niño"	m³/s	2.4	
Caudal promedio anual en años "La Niña"	m³/s	2.3	
Volumen máximo disponible	MMC	93.8	
Volumen mínimo disponible	MMC	45.4	

Tabla 7-61 Caudales promedios en año seco, normal y húmedo en la Sub20 - Subcuenca El Pañe Negrillo

Climatología de caudales en año seco, normal y húmedo (m3/s)													
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	0.4	0.5	0.7	1.6	2.8	2.9	3.4	1.8	1.1	0.9	0.7	0.5	1.4
Normal	0.6	0.7	1.1	2.3	4.6	4.1	4.4	2.6	1.5	1.2	0.9	0.7	2.1
Húmedo	0.8	1.0	1.5	2.7	5.0	6.6	6.8	4.5	2.7	1.9	1.4	1.0	3.0

7.8.21 Caracterización de la oferta hídrica Sub21- Subcuenca Condoroma

La Figura 7-68 muestra los caudales medios multianuales generados a la salida de la Subcuenca Condoroma (Sub-21) que corresponden a un área de drenaje de 223.9 Km2. La Tabla 7-62 indican que el caudal promedio multianual de la Subcuenca 21, en años húmedos crece a 3.1 m3/s y en años secos puede bajar a 1.4 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 4.5 m3/s (marzo) y en estiaje llega a valores mínimos de 0.6 m3/s (octubre).

Figura 7-68 Síntesis de caudales anuales generados en la Sub 21- Subcuenca Condoroma

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	223.9	
Caudal promedio anual	m³/s	2.2	
Caudal máximo	m³/s	9.6	
Caudal mínimo	m³/s	0.1	
Caudal promedio anual en años secos	m³/s	1.4	
Caudal promedio anual en años húmedos	m³/s	3.1	
Caudal promedio anual al 50% persistencia	m³/s	2.0	A SECTION OF THE PERSON OF THE
Caudal promedio anual al 75% persistencia	m³/s	1.7	
Caudal promedio anual al 90% persistencia	m³/s	1.7	Target In
Caudal promedio anual en años "Niño"	m³/s	2.3	And the second
Caudal promedio anual en años "La Niña"	m³/s	2.2	
Volumen máximo disponible	MMC	98.7	
Volumen mínimo disponible	MMC	42.4	

Tabla 7-62 Caudales promedios en año seco, normal y húmedo en la Sub21 - Subcuenca Condoroma

Climatología de caudales en año seco, normal y húmedo (m3/s)													
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual
Seco	0.5	0.5	0.6	1.3	2.3	2.4	2.9	2.0	1.3	1.1	0.8	0.6	1.4
Normal	0.7	0.6	0.8	1.5	3.8	4.0	4.5	3.3	1.9	1.4	1.1	8.0	2.0
Húmedo	1.0	1.0	1.4	2.2	4.4	6.4	6.9	5.6	3.5	2.4	1.7	1.3	3.1

7.8.22 Caracterización de la oferta hídrica Subcuenca 22

La Figura 7-69 muestra los caudales medios multianuales generados a la salida de la Subcuenca veintidos (Sub-22) que corresponden a un área de drenaje de 88.5 Km2. La Tabla 7-63 indica que el caudal promedio multianual de la Subcuenca 22, en años húmedos crece a 26.3 m3/s y en años secos puede bajar a 10.0 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 38.5 m3/s (marzo) y en estiaje llega a valores mínimos de 8.8 m3/s (agosto).

Figura 7-69 Síntesis de caudales anuales generados en la subcuenca 22

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	88.5	
Caudal promedio anual	m³/s	17.3	
Caudal máximo	m³/s	123.8	
Caudal mínimo	m³/s	0.7	
Caudal promedio anual en años secos	m³/s	10.0	Mariana C 19 apr
Caudal promedio anual en años húmedos	m³/s	26.3	E to 10
Caudal promedio anual al 50% persistencia	m³/s	16.7	
Caudal promedio anual al 75% persistencia	m³/s	13.0	
Caudal promedio anual al 90% persistencia	m³/s	12.8	
Caudal promedio anual en años "Niño"	m³/s	18.6	
Caudal promedio anual en años "La Niña"	m³/s	17.6	
Volumen máximo disponible	MMC	819.3	
Volumen mínimo disponible	MMC	316.8	

Tabla 7-63 Caudales promedios en año seco, normal y húmedo en la Subcuenca 22

	Climatología de caudales en año seco, normal y húmedo (m3/s)													
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual	
Seco	7.8	9.0	9.6	10.2	9.2	10.5	19.9	12.6	8.1	8.5	7.7	7.4	10.0	
Normal	9.0	10.0	11.2	11.9	13.7	26.2	38.5	26.9	13.8	12.0	9.9	8.8	16.0	
Húmedo	11.3	12.2	14.9	17.4	20.4	65.4	60.8	50.1	20.0	16.6	13.8	12.3	26.3	

7.8.23 Caracterización de la oferta hídrica Sub 23 - Subcuenca Maquerullo

La Figura 7-70 muestra los caudales medios multianuales generados a la salida de la Subcuenca Maquerullo (Sub-23) que corresponden a un área de drenaje de 367.2 Km2. La Tabla 7-64 indican que el caudal promedio multianual de la Subcuenca 23, en años húmedos crece a 5.0 m3/s y en años secos puede bajar a 2.1 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 5.5 m3/s (febrero) y en estiaje llega a valores mínimos de 0.9 m3/s (octubre).

Figura 7-70 Síntesis de caudales anuales generados en la Sub 23- Subcuenca Maquerullo

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	367.2	
Caudal promedio anual	m³/s	3.4	
Caudal máximo	m³/s	15.1	and the
Caudal mínimo	m³/s	0.2	
Caudal promedio anual en años secos	m³/s	2.1	
Caudal promedio anual en años húmedos	m³/s	5.0	1998
Caudal promedio anual al 50% persistencia	m³/s	3.2	The state of the s
Caudal promedio anual al 75% persistencia	m³/s	2.7	
Caudal promedio anual al 90% persistencia	m³/s	2.6	Contract of the contract of th
Caudal promedio anual en años "Niño"	m³/s	3.7	
Caudal promedio anual en años "La Niña"	m³/s	3.5	
Volumen máximo disponible	MMC	157.9	
Volumen mínimo disponible	MMC	66.9	

Tabla 7-64 Caudales promedios en año seco, normal y húmedo en la Sub23 - Subcuenca Maquerullo

	Climatología de caudales en año seco, normal y húmedo (m3/s)													
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual	
Seco	0.8	0.7	0.7	1.6	3.8	3.9	4.6	3.2	2.2	1.8	1.3	1.0	2.1	
Normal	1.1	0.9	1.1	2.2	5.5	6.2	6.9	5.5	3.3	2.5	1.9	1.4	3.2	
Húmedo	1.6	1.6	2.1	3.4	6.5	10.2	10.8	9.2	5.9	4.1	2.9	2.1	5.0	

7.8.24 Caracterización de la oferta hídrica Sub 24 - Subcuenca Chalhuanca

La Figura 7-71 muestra los caudales medios multianuales generados a la salida de la Subcuenca Chalhuanca (Sub-24) que corresponden a un área de drenaje de 469.8 Km2. La Tabla 7-65 indican que el caudal promedio multianual de la Subcuenca 24, en años húmedos crece a 6.7 m3/s y en años secos puede bajar a 2.8 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 9.4 m3/s (marzo) y en estiaje llega a valores mínimos de 1.1 m3/s (octubre).

Figura 7-71 Síntesis de caudales anuales generados en la Sub 24- Subcuenca Chalhuanca

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	469.8	
Caudal promedio anual	m³/s	4.4	
Caudal máximo	m³/s	20.3	
Caudal mínimo	m³/s	0.3	
Caudal promedio anual en años secos	m³/s	2.8	and the same of th
Caudal promedio anual en años húmedos	m³/s	6.7	
Caudal promedio anual al 50% persistencia	m³/s	4.1	Contract of the Contract of th
Caudal promedio anual al 75% persistencia	m³/s	3.5	COLUMN TO THE PARTY OF THE PART
Caudal promedio anual al 90% persistencia	m³/s	3.4	The second secon
Caudal promedio anual en años "Niño"	m³/s	4.9	Total Control of the
Caudal promedio anual en años "La Niña"	m³/s	4.8	
Volumen máximo disponible	MMC	210.0	200 100000
Volumen mínimo disponible	MMC	87.2	

Tabla 7-65 Caudales promedios en año seco, normal y húmedo en la Sub 24 - Subcuenca Chalhuanca

	Climatología de caudales en año seco, normal y húmedo (m3/s)													
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual	
Seco	1.0	0.8	0.9	2.0	4.8	5.2	6.4	4.2	2.8	2.3	1.7	1.3	2.8	
Normal	1.4	1.1	1.3	2.9	6.9	8.1	9.4	6.9	4.2	3.2	2.4	1.8	4.1	
Húmedo	2.1	2.0	2.6	4.4	8.1	14.1	15.2	12.1	7.7	5.4	3.9	2.8	6.7	

7.8.25 Caracterización de la oferta hídrica Sub 25 - Subcuenca Molloco

La Figura 7-72 muestra los caudales medios multianuales generados a la salida de la Subcuenca Molloco (Sub-25) que corresponden a un área de drenaje de 1578.1 Km2. La Tabla 7-66 indican que el caudal promedio multianual de la Subcuenca Molloco, en años húmedos crece a 16.7 m3/s y en años secos puede bajar a 6.3 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 26.8 m3/s (febrero) y en estiaje llega a valores mínimos de 2.5 m3/s (octubre y noviembre).

Figura 7-72 Síntesis de caudales anuales generados en la Sub 25 - Subcuenca Molloco

Caudales	Unidad	Valor	Unidad Hidrográfica				
Área drenaje	Km²	1578.1					
Caudal promedio anual	m³/s	11.1					
Caudal máximo	m³/s	61.5	Expends and/opening				
Caudal mínimo	m³/s	0.2	in co				
Caudal promedio anual en años secos	m³/s	6.3					
Caudal promedio anual en años húmedos	m³/s	16.7	A STATE OF THE PARTY OF THE PAR				
Caudal promedio anual al 50% persistencia	m³/s	10.4	TOTAL TOTAL				
Caudal promedio anual al 75% persistencia	m³/s	8.6					
Caudal promedio anual al 90% persistencia	m³/s	7.9					
Caudal promedio anual en años "Niño"	m³/s	12.4					
Caudal promedio anual en años "La Niña"	m³/s	12.7					
/olumen máximo disponible	MMC	519.3					
Volumen mínimo disponible	MMC	198.0					

Tabla 7-66 Caudales promedios en año seco, normal y húmedo en la Sub 25- Subcuenca Molloco

	Climatología de caudales en año seco, normal y húmedo (m3/s)													
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual	
Seco	1.5	1.7	1.8	10.0	13.9	13.9	14.1	7.6	4.0	3.2	2.3	1.8	6.3	
Normal	2.7	2.5	2.5	7.2	20.9	26.8	21.1	12.4	7.6	5.8	4.5	3.3	9.8	
Húmedo	4.3	4.2	4.3	12.4	28.6	47.7	36.8	23.0	14.5	10.7	7.7	5.6	16.7	

7.8.26 Caracterización de la oferta hídrica Sub 26 - Subcuenca Andahua

La Figura 7-73 muestra los caudales medios multianuales generados a la salida de la Subcuenca Andahua (Sub-26) que corresponden a un área de drenaje de 2666.7 Km2. La Tabla 7-67 indica que el caudal promedio multianual de la Subcuenca Andahua, en años húmedos crece a 20.5 m3/s y en años secos puede bajar a 5.6 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 38.7 m3/s (febrero) y en estiaje llega a valores mínimos de 3.1 m3/s (octubre).

Figura 7-73 Síntesis de caudales anuales generados en la Sub 26 - Subcuenca Andahua

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	2666.7	
Caudal promedio anual	m³/s	12.8	
Caudal máximo	m³/s	91.3	
Caudal mínimo	m³/s	0.0	The state of the s
Caudal promedio anual en años secos	m³/s	5.6	The same are
Caudal promedio anual en años húmedos	m³/s	20.5	
Caudal promedio anual al 50% persistencia	m³/s	12.2	
Caudal promedio anual al 75% persistencia	m³/s	7.8	
Caudal promedio anual al 90% persistencia	m³/s	7.6	
Caudal promedio anual en años "Niño"	m³/s	14.4	
Caudal promedio anual en años "La Niña"	m³/s	15.3	100
Volumen máximo disponible	MMC	636.6	-
Volumen mínimo disponible	MMC	176.5	W.

Tabla 7-67 Caudales promedios en año seco, normal y húmedo en la Sub 26 - Subcuenca Andahua

	Climatología de caudales en año seco, normal y húmedo (m3/s)													
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual	
Seco	1.0	1.2	1.7	9.3	12.8	12.8	13.4	6.8	3.2	2.4	1.7	1.2	5.6	
Normal	3.2	3.1	3.3	6.6	23.1	38.7	26.4	15.9	10.1	7.6	5.8	4.1	12.3	
Húmedo	5.2	4.9	4.3	11.3	32.6	63.4	45.6	28.6	18.8	13.8	9.9	7.1	20.5	

7.8.27 Caracterización de la oferta hídrica Subcuenca 27

La Figura 7-74 muestra los caudales medios multianuales generados a la salida de la Subcuenca veintisiete (Sub-27) que corresponden a un área de drenaje de 690.3 Km2. La Tabla 7-68 indican que el caudal promedio multianual de la Subcuenca 27, en años húmedos crece a 95.0 m3/s y en años secos puede bajar a 32.1 m3/s; y el caudal promedio multimensual, en época de avenidas alcanza 148.2 m3/s (febrero) y en estiaje llega a valores mínimos de 18.0 m3/s (octubre).

Figura 7-74 Síntesis de caudales anuales generados en la Sub 27 - Subcuenca 27

Caudales	Unidad	Valor	Unidad Hidrográfica
Área drenaje	Km²	690.3	
Caudal promedio anual	m³/s	61.5	
Caudal máximo	m³/s	349.4	
Caudal mínimo	m³/s	0.0	
Caudal promedio anual en años secos	m³/s	32.1	A Line
Caudal promedio anual en años húmedos	m³/s	95.0	2000 B12
Caudal promedio anual al 50% persistencia	m³/s	57.1	4 A A A A A A A A A A A A A A A A A A A
Caudal promedio anual al 75% persistencia	m³/s	45.0	Control of the Contro
Caudal promedio anual al 90% persistencia	m³/s	41.2	
Caudal promedio anual en años "Niño"	m³/s	68.8	
Caudal promedio anual en años "La Niña"	m³/s	70.4	
Volumen máximo disponible	MMC	2957.5	
Volumen mínimo disponible	MMC	1008.6	

Tabla 7-68 Caudales promedios en año seco, normal y húmedo en la Sub 27 - Subcuenca 27

	Climatología de caudales en año seco, normal y húmedo (m3/s)													
Año	Sep	Oct	Nov	Dic	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Anual	
Seco	10.8	12.6	14.5	42.4	61.3	65.6	76.9	38.9	21.0	17.5	13.2	10.8	32.1	
Normal	18.3	18.0	20.5	35.0	112.9	148.2	136.8	83.7	45.9	35.0	26.1	20.5	58.4	
Húmedo	27.2	27.9	32.3	64.4	130.6	277.9	216.5	144.5	80.6	59.7	44.8	33.1	95.0	

En el Anexo 7-1 se presenta los caudales medios mensuales generados por cada subcuenca que comprende la cuenca Ocoña y Camana respectivamente.

7.9 Conclusiones

Para la cuenca Ocoña y Camaná Majes, fueron identificados 6 parámetros sensibles y tienen gran impacto en la cuantificación y la respuesta hidrológica en los diferentes componentes del proceso hidrológico. El parámetro que tuvo mayor influencia en la respuesta de la escorrentía superficial fue SURLAG y CH_N. Los parámetros de suelo más sensibles y que tienen mayor influencia sobre la cuantificación del flujo de retorno fue SOL_AWC. Mientras tanto los parámetros GWQMN y SHALLST fueron los más importantes en la cuantificación y respuesta del flujo de retorno desde los acuíferos para mejorar las descargas simuladas en el periodo de estiaje.

El modelo SWAT es adecuado para el modelamiento hidrológico de las cuencas de Ocoña y Camaná Majes, lo cual fue verificado mediante las métricas de incertidumbre (P-factor y R-factor) y de desempeño (NSE y PBIAS).

Para Ocoña, en la etapa de la calibración (validación) en el periodo 2006-2011 (2012-2016) se obtuvo un buen desempeño del modelo SWAT con NSE=0.74 (NSE=0.5) y PBIAS=1% (PBIAS=8.3%) con una banda estrecha de incertidumbre dado por valores bajos de r-factor = 0.09 (r-factor = 0.1) donde el intervalo de predicción al 95% contuvo más del 24% (25%) de las descargas medias diarias observadas según el p-factor. Por otro lado en la simulación de las descargas mensuales las métricas de desempeño del modelo SWAT fueron mejores aún.

Para Camaná Majes, en la etapa de la calibración (validación) en el periodo 2002-2010 (2011-2016) se obtuvo un buen desempeño del modelo SWAT con NSE=0.63 (NSE=0.74) y PBIAS=-0.6% (PBIAS=1.9%) con una banda estrecha de incertidumbre dado por valores bajos de r-factor = 0.03 (r-factor = 0) donde el intervalo de predicción al 95% contuvo más del 20% (16%) de las descargas medias diarias observadas según el p-factor. Por otro lado en la simulación de las descargas mensuales las métricas de desempeño del modelo SWAT fueron mejores aún.

El buen desempeño del modelo SWAT en la simulación de descargas de las cuencas del río Ocoña y Camaná Majes, sugiere que SWAT es un modelo adecuado para el modelamiento hidrológico de cuencas en la vertiente del Pacífico sur del Perú. Mención aparte, es que también se obtuvo un muy buen desempeño para la cuenca regulada Camaná, teniendo en cuenta que se disponía información limitada (corto periodo) respecto de los caudales de salida del reservorio Condoroma.

En el Balance Hídrico de la cuenca del río Ocoña se ha determinado con el modelo SWAT que la precipitación media anual alcanza el valor de 441.0 mm/año; la evapotranspiración real, 180.0 mm/año y el rendimiento hídrico, 227.0 mm/año. El 83% del rendimiento hídrico es aportado por el flujo base de la cuenca, mientras que el 17%, es aportado por la escorrentía superficial de la cuenca.

En el Balance Hídrico de la cuenca del río Camaná-Majes se ha determinado con el modelo SWAT que la precipitación media anual alcanza el valor de 356.0 mm/año; la evapotranspiración real, 202.0 mm/año y el rendimiento hídrico, 127.0 mm/año. El 85% del rendimiento hídrico es aportado por el flujo base de la cuenca, mientras que el 15%, es aportado por la escorrentía superficial de la cuenca. Con respecto a los caudales, en la cuenca del río Ocoña, se ha determinado que la mayor producción de agua se presenta en el sistema hídrico del río Marán, con un caudal promedio anual de 61.0 m³/s.

En el sistema hídrico del río Cotahuasi la oferta hídrica alcanza un caudal promedio anual de 41.0 m³/s. La menor oferta hídrica anual se presenta en la subcuenca seca del río Churunga con un caudal promedio anual de 0.6 m³/s. Para el sistema hídrico del río Colca que la oferta de agua anual es de 34.8 m³/s. En la subcuenca Capiza que recibe aportes de deshielo del Coropuna, la oferta hídrica anual alcanza en promedio 1.48 m³/s. La menor oferta de agua se presenta en las subcuencas de Paluviñas y Molles con un caudal promedio anual de 0.06 m³/s y 0.02 m³/s, respectivamente.

Referencias Bibliograficas

Abbaspour, KC (2015). SWAT-Calibration and uncertainty programs (CUP). Páginas 22-69.

Arnold JG, Williams JR, Maidment DR (1995b) Continuous-Time Water and Sediment-Routing Model for Large Basins. J Hydraul Eng 121:171–183. doi: 10.1061/(ASCE)0733-9429(1995)121:2(171) Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M., et al. (2015).

Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing, 103:7–27.

Di Luzio, M., Srinivasan, R., Arnold, J., and Neitsch, S. (2002). ArcView interface for SWAT2000. BRC Report, pages 02-07.

Hengl, Tomislav, (2014). SoilGrids1kmglobal soil information based on automated mapping. PloS one, 9(8):e105992.

Miller, S. N., Semmens, D. J., Goodrich, D. C., Hernandez, M., Miller, R. C., Kepner, W. G., and Guertin, D. P. (2007). The automated geospatial watershed assessment tool. Environmental Modelling & Software, 22(3):365-377.

Matalas, N.C. 1967. Mathematical assessment of synthetic hydrology. Water Resources Res. 3(4): 937-945.

Moriasi DN, Arnold JG, Van Liew MW, et al (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900. doi: 10.13031/2013.23153

Rojas, Rodrigo Zambrano-bigiarini, Mauricio (2012). Tutorial for interfacing hydroPSO \ast with SWAT 2005 and MODFLOW 2005. Páginas 44-68.

Anexo – Capítulo VII

Anexo 7-1. Caudales medios mensuales (período 1981-2010) para cada subcuenca considerada en los modelos SWAT de las cuencas de Ocoña y Camaná Majes

Tabla 7-69. Resumen de los caudales medios mensuales (período 1981-2010) para cada subcuenca considerada en el modelo SWAT de la cuenca del Río Ocoña.

	Caudales medios mensuales (m3/s)													
Subcuencas	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Set	Oct	Nov	Dic		
Subcuenca 1	19.2	40.6	47.0	36.1	22.8	13.4	10.2	7.6	6.0	4.8	4.3	8.9		
Subcuenca 2	21.3	45.6	53.1	40.8	25.9	15.2	11.5	8.7	6.8	5.5	4.8	9.6		
Subcuenca 3	20.0	34.9	35.4	22.9	12.8	7.8	6.2	4.5	4.0	3.4	4.3	11.0		
Subcuenca 4	2.0	5.0	6.1	4.7	3.0	1.8	1.4	1.0	0.8	0.7	0.5	0.7		
Subcuenca 5	31.9	48.7	41.8	25.5	13.8	8.6	7.8	5.2	5.6	4.7	5.7	16.2		
Subcuenca 6	13.0	20.8	20.0	13.6	7.9	5.0	3.9	2.8	2.5	2.1	2.0	5.7		
Subcuenca 7	10.1	18.3	17.7	12.5	7.2	4.6	3.7	2.7	2.6	2.1	1.9	4.8		
Subcuenca 8	8.3	20.7	23.6	16.4	11.5	8.1	6.2	4.7	3.5	2.7	2.1	2.7		
Subcuenca 9	48.9	98.3	104.8	72.0	43.1	25.8	19.9	14.7	12.3	10.1	10.0	23.3		
Subcuenca 10	9.8	24.4	26.6	19.1	11.8	7.2	5.7	4.2	3.7	2.7	2.1	3.9		
Subcuenca 11	1.1	3.2	3.6	3.1	2.7	2.2	1.7	1.3	1.0	0.7	0.5	0.5		
Subcuenca 12	72.2	153.6	162.4	108.7	66.5	41.1	31.6	23.2	19.2	15.4	13.9	30.4		
Subcuenca 13	69.0	115.4	99.4	61.5	34.1	21.7	18.2	12.5	13.5	10.4	10.8	30.9		
Subcuenca 14	9.0	20.8	16.2	11.9	7.6	5.4	4.1	3.1	2.6	2.1	1.7	3.7		
Subcuenca 15	0.7	1.3	0.8	0.3	0.2	0.1	0.1	0.1	0.1	0.0	0.0	0.2		
Subcuenca 16	0.6	0.8	0.4	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1		
Subcuenca 17	0.3	0.3	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.1		
Subcuenca 18	1.7	2.5	1.3	0.3	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.3		
Subcuenca 19	154.1	295.4	280.0	181.0	107.0	67.1	52.7	37.7	34.0	26.9	25.7	65.0		
Subcuenca 20	153.8	294.8	278.8	179.4	106.3	66.2	51.7	36.8	33.5	26.1	25.2	64.2		

Tabla 7-70. Resumen de los caudales medios mensuales (período 1981-2010) para cada subcuenca considerada en el modelo SWAT de la cuenca del Río Camaná Majes.

	Caudales medios mensuales (m3/s)												
Subcuencas	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Set	Oct	Nov	Dic	
Subcuenca 1	102.4	161.8	141.4	86.8	47.1	35.3	26.1	19.7	17.3	18.1	21.3	45.3	
Subcuenca 2	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Subcuenca 3	0.3	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Subcuenca 4	2.5	3.5	3.7	3.0	2.3	1.7	1.2	0.9	0.7	0.5	0.5	0.8	
Subcuenca 5	0.6	0.7	0.7	0.6	0.4	0.3	0.2	0.2	0.1	0.1	0.1	0.2	
Subcuenca 6	1.9	2.8	2.9	2.4	1.8	1.3	1.0	0.7	0.5	0.4	0.4	0.6	
Subcuenca 7	0.8	1.2	0.5	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	
Subcuenca 8	5.0	7.5	7.8	6.5	4.7	3.5	2.5	1.8	1.3	1.1	1.1	1.9	
Subcuenca 9	102.4	162.2	142.9	88.9	49.3	37.6	28.3	21.8	19.1	19.6	22.4	46.2	
Subcuenca 10	3.1	6.4	3.0	1.5	1.1	0.4	0.3	0.2	0.7	0.3	0.2	1.0	
Subcuenca 11	98.6	154.6	139.8	87.9	48.9	37.9	28.7	22.2	18.9	19.8	22.6	45.3	
Subcuenca 12	11.7	16.7	18.4	15.6	10.7	7.9	5.8	4.2	3.0	2.4	2.7	4.7	
Subcuenca 13	5.7	7.4	6.9	4.8	3.4	2.6	1.9	1.4	1.1	0.9	1.0	2.0	
Subcuenca 14	0.6	0.9	0.7	0.5	0.4	0.3	0.2	0.2	0.1	0.1	0.1	0.2	
Subcuenca 15	47.7	76.8	82.3	55.6	30.0	24.1	18.9	15.4	13.8	14.4	16.8	25.3	
Subcuenca 16	17.5	24.1	26.3	21.5	14.5	10.8	7.8	5.7	4.2	3.5	4.0	7.1	
Subcuenca 17	4.8	6.6	8.0	7.1	4.6	3.4	2.5	1.8	1.3	1.1	1.1	2.1	
Subcuenca 18	7.8	25.1	30.7	22.8	9.6	9.1	8.1	7.7	8.0	9.2	10.3	10.2	
Subcuenca 19	26.3	48.5	55.8	40.5	20.9	17.4	14.2	12.1	11.3	12.2	14.2	17.8	
Subcuenca 20	4.2	4.5	4.9	3.0	1.8	1.3	1.0	0.8	0.6	0.7	1.1	2.2	
Subcuenca 21	3.5	4.3	4.7	3.6	2.2	1.6	1.2	0.9	0.7	0.7	0.9	1.7	
Subcuenca 22	14.4	33.3	39.6	29.6	13.9	12.3	10.4	9.4	9.3	10.4	11.9	13.1	
Subcuenca 23	5.3	6.7	7.4	5.9	3.7	2.8	2.0	1.5	1.2	1.0	1.3	2.4	
Subcuenca 24	6.7	8.9	10.2	7.5	4.8	3.5	2.6	1.9	1.4	1.3	1.5	3.0	
Subcuenca 25	21.8	30.1	24.4	14.5	8.9	6.7	5.0	3.6	2.9	2.9	2.9	9.8	
Subcuenca 26	22.8	38.4	28.3	17.0	10.6	7.9	5.8	4.1	3.1	3.1	3.1	8.8	
Subcuenca 27	102.7	162.4	142.7	88.5	48.9	37.2	27.9	21.4	18.7	19.3	22.2	46.0	